The multicriteria traffic environmental impact appraisal in urban road network: A case study of Khon Kaen
Main Article Content
Abstract
This paper described an evaluation of the multiple criteria traffic and transportation environmental impact on the Central Business District (CBD) road networks in the city of Khon Kaen. The Mathematical Model Method (MMM) approach was adopted to estimate the levels of traffic and transportation environmental impacts of 39 road segments for 3 factors including (1) CO concentrations; (2) Noise levels and (3) Pedestrian accident risk. The Analytic Hierarchy Process (AHP) method was also applied to calculate the Composite Environmental Impact Scores (CEIS) of those 39 road segments. The computed CEIS can be used to prioritize each road segment according to its degree of multiple criteria traffic & Transport environmental impacts, specify the problem locations and identify the likely causes of such problems. The results of research show that those road segments with high CEIS values are road segment No. 9, 10, 11 and 12 and traffic noise levels are the main cause of such problems. These findings can be used to assist decision makers to prioritize and relevantly and effectively allocate their limited budgets for solving problems.
Article Details
References
[2] United Nations. The Sustainable Development Goals Report 2016. United Nations Publications. New York, USA; 2016.
[3] Cervero R. Transport Infrastructure and the Environment: Sustainable Mobility and Urbanism. Oakville; 2013.
[4] Klungboonkrong P. Sustainable Urban Transportation Planning: Principle and Practice. 1st ed. khonkaen: KKU PRINTING; 2018.
[5] Loder and Bayly, Victoria. Road Safety and Traffic Authority. Road-amenity Classification: A Practical Tool for Traffic Management. Hawthorn: Road Safety and Traffic Authority; 1980.
[6] Holdsworth J, SINGLETON DJ. Environmental traffic capacity of roads. In: Papers of the Fifth Australian Transport Research Forum. Sydney: Hemming Group, Limited; 1979. p. 219–38.
[7] Shiran G, Hidas P. Area-wide environmental capacity based on air pollution: an urban development evaluation tool. In: Proceedings of the 18th Australian Road Research Board Transport Research Conference and Transit NZ Land Transport Symposium. 1996. p. 249–63.
[8] Colin Buchanan. Traffic in Towns: A Study of the Long Term Problems of Traffic in Urban Areas. London, United Kingdom; 1963.
[9] วรัญญู อุทธา และพนกฤษณ คลังบุญครอง. การประเมินค่าความจุทางสิ่งแวดล้อมด้านการจราจรจากหลากหลายปัจจัยบนโครงข่ายถนนในมหาวิทยาลัยขอนแก่น โดยใช้กระบวนการตัดสินใจอย่างเป็นลำดับชั้น. In: เอกสารประกอบการประชุมวิชาการวิศวกรรมโยธาแห่งชาติครั้งที่ 22. 2560. p. 393–405.
[10] Song L, Black JA, Dunne M. Environmental Capacity Based on Pedestrian Delay and Accident Risk. Road Transp Res. 1993;2(3):40–9.
[11] Singleton DJ, Twiney PJ. Environmental sensitivity of arterial roads. In: Proceedings of the 10th Australian Transport Research Forum. Melbourne: ARRB; 1985. p. 165–82.
[12] Troutbeck RJ. The characteristics of the times drivers are stopped at unsignalised intersections. In: Daganzo CF, editor. Transportation and Traffic Theory. Elsevier Science Publishers; 1993. p. 575–94.
[13] Affum JK, Taylor MAP. Integration of models for transport planning and analysis and Geographic Information Systems. In: Papers of the Australasian Transport Research Forum 20(1). 1996. p. 15 p.
[14] Klungboonkrong P, Taylor MAP. The experiences in evaluating the multicriteria traffic environmental impacts in urban road networks using SIMESEPT. Adv Transp. 2002; 311–22.
[15] Klungboonkrong P, Taylor MAP. An Integrated Planning Tool for Evaluating Road Environmental Impacts. Comput Civ Infrastruct Eng. 1999 Sep; 14(5):335–45.
[16] Klungboonkrong P. A microcomputer-aided system for the multicriteria environmental impact evaluation: The City of Unley case study, Australia. J East Asia Soc Transp Stud Environ Saf. 1999; 3(1):99–114.
[17] Widiantono DJ, Samuels SE. Towards a general model for the environmental capacity of roads. In: Proceedings of the 9th Road Engineering Association of Asia and Australasian (REAAA) Conference. 1998. p. 287–92.
[18] พนกฤษณ คลังบุญครอง และ ธีระ เกียรติมานะโรจน์. กระบวนการสืบค้นความรู้สำหรับการประเมินผลกระทบสิ่งแวดล้อม. In: การประชุมวิชาการวิศวกรรมโยธาแห่งชาติครั้งที่ 8. 2545. p. 129–34.
[19] Klungboonkrong P, Taylor MAP. A microcomputer-based-system for multicriteria environmental impacts evaluation of urban road networks. Comput Environ Urban Syst. 1998; 22(5):425–46.
[20] ภาคิน ธนณรงค์ พนกฤษณ คลังบุญครอง วินัย ศรีอำพร สุรัตน์ ประมวลศักดิกุล และ ชาติชาย ไวยสุระสิงห์. การประเมินผลกระทบสิ่งแวดล้อมด้านการจราจรหลายปัจจัยเชิงพื้นที่ กรณีศึกษาเมืองขอนแก่น. วารสารวิจัย มข. 2563; 20(2).
[21] OTP. Final Report of the study design details of the public transport system in Khon Kaen province, and environmental impact. 2017.
[22] Caltrans. CALINE4 – A Dispersion Model for Predicting Air Pollutant Concentrations Near Roadways, Final Report prepared by the Caltrans Division of New Technology and Research (Report No. FHWA/CA/TL-84/15). 1989.
[23] SIRDC. A study on the development of greenhouse gas emission baseline model in transport sector of a regional city prototype and evaluating the feasibility of reducing greenhouse gas emission in transport sector of Thailand, (in Thai). Thailand; 2012.
[24] Long S. The consequences of electric vehicle and mass transit system development and land use planning on the transport related performances and energy and environmental aspects: the Khon Kaen case study. Khon Kaen University, Thailand; 2017.
[25] Klungboonkrong P, Jaensirisak S, Satiennam T. Potential performance of urban land use and transport strategies in reducing greenhouse gas emissions: Khon Kaen case study, Thailand. Int J Sustain Transp. 2017;11(1):36–48.
[26] Garg N, Maji S. A critical review of principal traffic noise models: Strategies and implications. Environ Impact Assess Rev. 2014; 46:68–81.
[27] Pamanikabud P, Vivitjinda P. Noise prediction for highways in Thailand. Transp Res Part D Transp Environ. 2002; 7(6):441–9.
[28] Barry TM, Reagan JA. FHWA Highway Traffic Noise Prediction Model, FHWA-RD-77-108. Washington, DC; 1978.
[29] UK DoT. Calculation of Road Traffic Noise (CoRTN). London; 1988.
[30] Quiñones-Bolaños EE, Bustillo-Lecompte CF, Mehrvar M. A traffic noise model for road intersections in the city of Cartagena de Indias, Colombia. Transp Res Part D Transp Environ. 2016; 47:149–61.
[31] Peng J, Parnell J, Kessissoglou N. A six-category heavy vehicle noise emission model in free-flowing condition. Appl Acoust. 2019; 143:211–21.
[32] Woolley J, Klungboonkrong P, TAYLOR M, Yue WL. Review Of Relationships Between Traffic Congestion And Noise And Air Emissions. In: ARRB TRANSPORT RESEARCH LTD CONFERENCE, 19TH. SYDNEY, NEW SOUTH WALES, AUSTRALIA; 1998.
[33] Klungboonkrong P, Bejrananda M, Faiboun N. The Application of the Environmental Adaptation Concept to A Collector Road in KKU, Thailand. J Sci Technol MSU. 2016; 35(3):280–8.
[34] Klungboonkrong P. Development of A Decision Support Tool for The Multicriteria Environmental Impact Evaluation of Urban Road Networks. University of south Australia.; 1998.
[35] Huang IB, Keisler J, Linkov I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci Total Environ. 2011 Sep; 409(19):3578–94.
[36] Saaty TL. The Analytic Hierarchy Process: Priority Setting, Resource Allocation. McGraw-Hill international book company; 1980.
[37] Saaty TL, Vargas LG. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Boston, MA: Springer US; 2001. (International Series in Operations Research & Management Science; vol. 34).
[38] Saaty TL. How to make a decision: The analytic hierarchy process. Eur J Oper Res. 1990 Sep; 48(1):9–26.