การศึกษาตัวแปรที่มีผลต่อค่าน้ำหนักบรรทุกวิกฤติของเสาท่อเหล็กกรอกคอนกรีตหน้าตัดวงกลมภายใต้แรงอัดตามแนวแกน
Main Article Content
Abstract
This paper presents a parametric study of the critical loads on the concrete-filled steel pipe column (CFT) under axial compression by ABAQUS program based on C3D8R element. The diameter and height of CFT column are 150 mm and 300 mm, respectively. The thicknesses of the pipe steel columns are varied from 3.0, 4.5, and 6.0 mm. These values were used to validate the finite element model of the CFT column. The results indicate that the accuracy results of the finite element model showed good agreement with the experimental results. Therefore, the finite element model, which is calibrated with the experimental results, is used to study the parametric effects on the failure behavior of CFT columns are thicknesses and heights of steel columns, friction coefficients, which are investigated. The results show that the thickness variation has a major effect on the critical loads, that is, the values of critical load increase as the thickness becomes higher, while the height of CFT column and friction coefficient have a little effect on the critical loads.
Article Details
References
[2] Al-Ani, Y.R. 2018. Finite element study to address the axial capacity of the circular concrete-filled steel tubular stub columns. Thin-Walled Structures, 126: 2-15.
[3] จักษดา ธำรงวุฒิ และ กมลรัตน์ ฤทธิ์รักษา. 2559. ผลกระทบของลักษณะแรงกระทำต่อตัวอย่างท่อเหล็กหน้าตัดวงกลมกรอกคอนกรีตกำลังสูง. วารสารมทร.อีสาน ฉบับวิทยาศาสตร์และเทคโนโลยี. 9(1): 145 - 160.
[4] นันทิกา นามวิจิตร, สิทธิชัย แสงอาทิตย์, จักษดา ธำรงวุฒิ และ ศาสน์ สุขประเสริฐ. 2554. พฤติกรรมและกำลังรับแรงอัดของคอนกรีตหน้าตัดวงกลมที่ถูกโอบรัดก่อนด้วยปลอกเหล็ก. วารสารวิชาการวิศวกรรมศาสตร์ ม.อบ. 4(1): 1-15.
[5] Tomii, M., Sakino, K., Watanabe, K. and Xiao, Y. 1985. Lateral load capacity of reinforced concrete short columns confined by steel tube. Proceeding of International Specialty Conference on Concrete Filled Steel Tubular Structures. Harbin. China. 19-26.
[6] Ellobody, E., Young, B. and Lam, D. 2006. Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 62(7): 706-715.
[7] Han, L.H., Li. W. and Bjorhovde, R. 2014. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members. Journal of Constructional Steel Research, 100: 211-228.
[8] Liang, Q.Q. and Fragomeni, S. 2010. Nonlinear analysis of circular concrete-filled steel tubular short columns under eccentric loading. Journal of Constructional Steel Research, 66(2): 159-169.
[9] Tao, Z., Wang, Z.B. and Yu, Q. 2013. Finite Element Modelling of Concrete-Filled Steel Stub Columns under Axial Compression. Journal of Constructional Steel Research, 89: 121-131.
[10] Abaqus. 2017. ABAQUS Standard User’s Manual. Hibbit, Karlsson and Sorensen, Inc., vols. 1-3, Version 6.12, USA.
[11] Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. 2002. Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Inc., New York.
[12] Li, G., Zhang, R., Yang, Z. and Zhou, B. 2017. Finite element analysis on mechanical performance of middle long CFST column with inner I-shaped CFRP profile under axial loading. Structures, 9: 63-69.
[13] ACI Committee 318. 2005. ACI318-02 Building Code Requirements for Reinforced Concrete and Commentary. American Concrete Institute. USA.
[14] AISC. 2005. Load and Resistance Factor Design Specification for Structural Steel Buildings. American Institute of Steel Construction. USA.