Efficiency of Tetracycline-Contaminated Wastewater Treatment by Activated Sludge Microorganisms in Free, Attached, and Entrapped Cell Forms

Main Article Content

Pongsatorn Taweetanawanit
Sudawadee Yasaka
Narupawan Prommawai
Tongpak Donprajum

Abstract

The purpose of this study is to compare the efficiency of activated sludge cells in free cell (FC), attached cell (AC) and entrapped cell (EC) modes to treat of synthetic wastewater with tetracycline contamination. Synthetic wastewater has contained COD of 270.33±6.64 mg/L and tetracycline of 9.25±0.08 mg/L. The batch experiment was tested under aerobic condition for 72 h. The results showed that all experiments removed COD rapidly within 24 h. (36.95 68.97 and 83.77% for FC, AC, and EC, respectively) and COD was stable thereafter. The tetracycline removal was 10.36, 30.20 and 36.33% (from the test of FC, AC, and EC, respectively), because the treatment process is a biological treatment which relies on microorganisms, causing microorganisms to take time to remove (it takes time to acclimate, and it grows by decomposing organic matter). When comparing the efficiency of the activated sludge cells in FC, AC and EC models, the author found that the highest removal efficiency of COD and tetracycline was the activated sludge cells in the EC model. Cell entrapment was helped to prevent microbial inhibition from tetracycline, and also, the entrapped material absorbs organic matter, thereby, increasing the efficiency of organic removal. As for the trace of pH and Suspended Solid (SS), the author found that the pH was in the range of 7.02-8.31, which was the range of microorganisms in the wastewater could grow, and all experimental sets had no different results. The SS level increased with all trial set. The free cell experimental set had the highest of SS. The higher SS level was due to the effect of free microorganisms which suspended in the system. When the samples were collected and analyzed for the SS level, the amount of SS level was higher. But in the AC and EC, there was an increase in SS caused by the surface of the entrapped material which peeling off, and microorganisms were growing outside the entrapped material. The results of this study suggested that the entrapped cell has the potential to be applied in the future to treat tetracycline contaminated wastewater.

Article Details

Section
บทความวิจัย (Research Article)
Author Biographies

Sudawadee Yasaka, Division of Environmental Health, Faculty of Public Health, Naresuan University Phitsanulok 65000

Faculty of Public Health, Division of Environmental Health

Narupawan Prommawai, Division of Health Science, Faculty of Science, Udon Thani Rajabhat University Udon Thani 41000

Faculty of Science, Division of Health Science

Tongpak Donprajum, Division of Community Health, Faculty of Liberal Arts and Science, Sisaket Rajabhat University Sisaket 33000

Faculty of Liberal Arts and Science, Division of Community Health

References

Ahn, K.C., Kasagami, T., Tsai, H., Schebb, N.H., Ogunyoku, T., Gee, S.J., Young, T.M. and Hammock B.D. (2012). An Immunoassay to evaluate human/environmental exposure to the antimicrobial triclocarban, Environmental Science & Technology, 46, 374–381.

Borghi, A.A. and Palma, M.S.A. (2014). Tetracycline: production, waste treatment and environmental impact assessment, Brazilian Journal of Pharmaceutical Sciences, 50(1), 25-38.

Su, Y.L., Wang, J.X., Huang, Z.T. and Xie, B. (2017). On-site removal of antibiotics and antibiotic resistance genes from leachate by aged refuse bioreactor: effects of microbial community and operational parameters. Chemosphere, 178: 486-495.

Manyi-Loh, C., Mamphweli, S., Meyer, E. and Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23(795): 1-48.

Conde-Cid, M., Núñez-Delgado, A., Fernández-Sanjurjo, M.J., Álvarez-Rodríguez, E., Fernández-Calviño, D. and Arias-Estévez, M. (2020). Tetracycline and sulfonamide antibiotics in soils: presence, fate and environmental risks. Processes, 8(1479): 1-40.

Hosseini, S.H. and Borghei, S.M. (2005). The treatment of phenolic wastewater using a moving bed bio-reactor. Process Biochemistry, 40, 1027–1031.

Xing, Z.P., Sun, D.Z., Yu, X.J., Zou, J.L., Zhoua W. (2014). Treatment of antibiotic fermentation-based pharmaceutical wastewater using anaerobic and aerobic moving bed biofilm reactors combined with ozone/hydrogen peroxide process. Environmental Progress & Sustainable Energy, 33(1): 170-177.

Shao, S., Hu. Y., Cheng, C., Cheng, J. and Chen, Y. (2018). Simultaneous degradation of tetracycline and denitrification by a novel bacterium, Klebsiella sp. SQY5. Chemosphere, 209: 35-43.

Robinson, T.P., Bu, D.P., Carriqque-Mas, J., Fèvre, E.M., Gilbert, M., Grace, D., Hay, S.I., Jiwakanon, J., Kakkar, M., Kariuki, S., Laxminarayan, R., Lubroth, J., Magnusson, U., Thi-Ngoc, P., Van-Boeckel, T. P. and Woolhousepet M.E.J. (2016). Antibiotic resistance is the quintessential One Health issue. Transactions of the Royal Society of Tropical Medicine and Hygine, 110: 377–380.

Wang, X., Chen, Z., Kang, J., Zhaob, X. and Shen, J. (2018). Removal of tetracycline by aerobic granular sludge and its bacterial community dynamics in SBR. RSC Advances, 8(33): 18284-18293.

อารยา ข้อค้า. (2563). ยาปฏิชีวนะและการดื้อยาปฏิชีวนะของแบคทีเรีย. วารสารการแพทย์และวิทยาศาสตร์สุขภาพ. 27(2): 125-139.

Kovalakova, P., Cizmas, L., McDonald, T.J., Marsalek, B., Feng, M. and Sharma, V.K. (2020). Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere, 251: 126351.

พงศธร ทวีธนวาณิชย์ และสุมนา สิริพัฒนากุล- ราษฏร์ภักดี. (2562). การเปรียบเทียบประสิทธิภาพการกำจัดสารปฏิชีวนะไตรโคลคาร์บอน (Triclocarban; TCC) ด้วย Pseudomonas fluorescens MC46 และ Ochrobactrum sp. MC22. วารสารวิชาการ วิศวกรรมศาสตร์ ม.อบ. ปีที่: 12 ฉบับที่ : 1.

Siripattanakul, S., Wirojanagud, W. McEvoy, J. and Khan, E. (2008). Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures on atrazine degradation. Water Air Soil Pollution, 8: 257–266.

พงศธร ทวีธนวาณิชย์ และสุมนา สิริพัฒนากุล. (2555). การบำบัดน้ำเสียที่ปนเปื้อนฟีนอลโดยใช้แอกทิเวเต็ดสลัดจ์ดักติด. วารสารวิชาการ วิศวกรรมศาสตร์ ม.อบ. ปีที่: 5 ฉบับที่ : 1. (มกราคม-มิถุนายน 2555).

Zhang, N., Wang, Q., Ren, J. and Wang, L. (2008). Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresource Technology, 99: 3787–3793.

Taweetanawanit, P., Radpukdee, T., Giao, N.T. and Siripattanakul-Ratpukdi, S. (2017). Mechanical and chemical stabilities of barium alginate gel: Influence of chemical concentrations. Key Engineering Materials, 718: 62-66.

ฐาปกรณ์ ปรีเรขา, สัน แอบกระโทก, ฐิติพร ทองเกลี้ยง และสุมนา สิริพัฒนากุล. (2553). การเปรียบเทียบการบำบัดน้ำเสียโรงพยาบาลแบบติดกับที่ด้วยระบบเซลล์ดักติด เซลล์อิสระและเซลล์ยึดเกาะ. วารสารวิชาการ วิศวกรรมศาสตร์ ม.อบ. ปีที่: 3 ฉบับที่ : 1. (มกราคม-มิถุนายน 2553).

Sonsuphab, K., Ratpukdi, T. and Siripattanakul–Ratpukdi, S. (2018). Influence of infiltration rates during profenofos pesticide removal by attached and entrapped bacterial cells. Desalination and Water Treatment, 120: 311-322.

American Public Health Association (APHA), American Water Work Association (AWWA), The World Economic Forum (WEF). Standard methods for the examination of water and wastewater. 21st ed. Washington DC.: (n.p.); 2005.

Ali, R.J., Hawezy H.J.S. and Abdullah M.S. (2018). Spectrophotometric determination of tetracycline hydrochloride through coupling with sulphanilic acid. Diyala Journal of Medicine, 15(2): 15-22.

Ullah, H. and Ali, S. (2017). Chapter 1: Classification of Anti‐Bacterial Agents and Their Functions. In: Antibacterial Agents. Web of ScienceTM

Halling-Sorensen, B. (2000). Algal toxicity of antibacterial agents used in intensive farming. Chemosphere. 40,731–739.

Yang, C., Liu, C. and Chang B. (2020). Biodegradation of amoxicillin, tetracyclines and sulfonamides in wastewater sludge. Water, 2147: 1-18.

นครินทร์ เทอดเกียรติกุล และสุมนา สิริพัฒนากุล-ราษฎร์ภักดี. (2563). การกำจัดแมงกานีสในน้ำใต้ดินโดยเซลล์ดักติดด้วยแบเรียมแอลจิเนตเติมผงถ่านกัมมันต์. วารสารวิชาการ วิศวกรรมศาสตร์ ม.อบ., ปี่ที่: 13 ฉบับที่ 2: 77-87.

Qian, W., Ma, B., Li, X., Zhang, Q. and Peng, Y. (2019). Long-term effect of pH on denitrification: high pH benefits achieving partial-denitrification. Bioresource Technology, 278: 444-449.

Zhang, L., Shen, Z., Fang, W. and Gao, G. (2019). Composition of bacterial communities in municipal wastewater treatment plant. Science of the Total Environment, 689: 1181-1191.

Taweetanawanit, P. and Siripattanakul-Ratpukdi, S. (2017). Wastewater treatment by barium alginate-entrapped activated sludge: Influence of barium chloride and sodium alginate concentrations. The 6th International Conference on Environmental Engineering, Science and Management, n.d.