Effects of air void characteristics on compressive strength of cellular lightweight concrete
Main Article Content
Abstract
Cellular lightweight concrete is produced by uniform distribution of air bubbles made from preformed foam throughout the mass of concrete in substitution of coarse aggregates. The properties of cellular lightweight concrete are depended on density or foam volume, when the concrete hardens was to become pore system inside. That, it is a very
significant characteristic affects to strength, durability and thermal conductivity. This paper presents the effect of foaming agent types to air void size of cellular lightweight concrete with a wet density of 1,800 kg/m3 using sand to cement ratios
of 2:1 and water to cement ratios of 0.65. At this density, the concrete specimens were used three types of foaming agent and used three different foaming agents to water ratios of 1:20, 1:30 and 1:40. To producing preformed foam by foam
generator used pressure at 4.5, 5.0, and 5.5 kg/cm2 and the concrete specimens were used air dry curing method for 28 days. It was found that when porosity was increased, the air void size at D90 and air void size distribution ranges were increased resulting in a decrease of compressive strength. SPAN (Sp) was used to identify the difference in air void.
Article Details
References
Narayanan N, Ramamurthy K. Structure and properties of aerated concrete: A review. Cement and Concrete Composites. 2000;22(5):321-329.
ชัชวาลย์ เศรษฐบุตร. คอนกรีตเทคโนโลยี. กรุงเทพมหานคร: คอนกรีตผสมเสร็จซีแพค; 2543.
Kumar NV, Arunkumar C, Srinivasa SS. Experimental study on mechanical and thermal behavior of foamed concrete. Materials Today: Proceedings. 2018;5(9):8753-8760.
Neville AM. Properties of Concrete. Harlow (England): Longman; 1995.
Just A, Middendorf B. Microstructure of high-strength foam concrete. Materials Characterization. 2009;60(7):741-748.
Hilal AA. Properties and microstructure of pre-formed foamed concrete [thesis]. Nottingham (UK): University of Nottingham, Department of Civil Engineering; 2015.
ธนภร ทวีวุฒิ, นท แสงเทียน, วิวัฒน์ พัวทัศนานนท์, สถาพร โภคา. ผลของความหนาแน่นและอัตราส่วนที่มีต่อปริมาณช่องว่างอากาศในคอนกรีตมวลเบาแบบเซลลูล่าที่ใส่สารลดน้ำปริมาณมาก. วารสารวิชาการวิศวกรรมศาสตร์ มหาวิทยาลัยอุบลราชธานี. 2561;11(2):1-11.
Nambiar EKK, Ramamurthy K. Air-void characterization of foam concrete. Cement and Concrete Research. 2007;37(2):221-230.
Abiev RS, Kozlov VV. Investigation of foam concrete properties, produced by means of vortex jet apparatus. New Materials, Compounds and Applications. 2018;2(1):71-80.
อภัย ชาภิรมย์. การพัฒนากำลังคอนกรีตเซลลูล่าด้วยเถ้าถ่านหินและเส้นใยสังเคราะห์ [วิทยานิพนธ์ วิศวกรรมศาสตร์ดุษฎีบัณฑิต]. นครราชสีมา: มหาวิทยาลัยเทคโนโลยีสุรนารี; 2561.
Visagie M. The effect of microstructure on the properties of foamed concrete [dissertation]. Pretoria (South Africa): University of Pretoria; 2000.
Lian C, Zhuge Y, Beecham S. The relationship between porosity and strength for porous concrete. Construction and Building Materials. 2011;25(11):4294-4298.
Ryshkevitch E. Compression strength of porous sintered alumina and zirconia. Journal of the American Ceramic Society. 1953;36(2):65-68.
Kearsley EP, Visagie M. Properties of foamed concrete as influenced by air-void parameters. Concrete Beton. 2002;101:9-13.
Moghadam H, Zaker M, Samimi A. Mono-Size Distribution Index (MSDI): A new criterion for the quantitative description of size distribution. Journal of Particle Science and Technology. 2019;5(2):71-76.