Prototype development of an autonomous monorail system for document transportation between buildings
Main Article Content
Abstract
Transporting documents between buildings is traditionally accomplished using vehicles, which results in energy waste and pollution. Moreover, the delivery of urgent documents outside the regular schedule necessitates staff involvement, thereby disrupting their regular duties. This research presents the development of a prototype tram system specifically designed for document transport between buildings. The system features a single-track design, facilitating easy installation in confined spaces. The electric trams are governed by algorithms that allow for real-time commands and tracking through wireless technology. The drive system employs a closed-loop Proportional-Integral (PI) controller to maintain the desired speed profile. Experimental results demonstrate that the vehicle can be effectively controlled wirelessly and adheres to the prescribed speed profile, both with and without a load.
Article Details
References
กองพัน อารีรักษ์. แบบจำลองทางคณิตศาสตร์ของระบบรถไฟฟ้า. โครงการวิจัยสาขาวิชาวิศวกรรมไฟฟ้า สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี; 2555.
ชัยยุทธ์ สัมภวะคุปต์, ธนัดชัย กุลวรวานิชพงษ์. การหาลักษณะสมบัติความเร็วรถไฟฟ้าเหมาะที่สุดของระบบรถไฟฟ้าขนส่งมวลชนโดยใช้วิธีดิฟเฟอเรนเชียลอีโวลูชัน. Research and Development Journal. 2557;25(4): 59–69.
บัณริ เข็มกลัดมุกต์. การออกแบบและสร้างระบบควบคุมการเดินรถสำหรับระบบขนส่งผู้โดยสารอัตโนมัติ. ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี; 2562.
พเนตร สุขสิงห์. การออกแบบและสร้างระบบควบคุมรถไฟฟ้าแบบไร้คนขับขนาดเล็ก. ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี; 2555.
เผด็จ แสนเกษม. การออกแบบเครื่องกล เครื่องยนต์. กรุงเทพฯ: สำนักพิมพ์ Top Publishing; 2558.
Adriansyah A, Wibowo M, Ihsanto E. Design of pet feeder using web server as Internet of Things application. In: International Conference on Electrical Engineering and Informatics. 2016.
Allam T, Raju M, Kumar SS. Design of PID Controller for DC Motor Speed Control using Arduino Microcontroller. International Research Journal of Engineering and Technology (IRJET).2016; 3(9):790-794.
Bing G, Hairong D, Yanxin Z. Speed adjustment braking of automatic train operation system based on fuzzy-PID switching control. In: 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery. IEEE; 2009.
Çetinarslan CS, Sahin M. Determining the influence of surface roughness on materials flow of various materials using grid lines during cold forming. Industrial Lubrication and Tribology. 2010;62(1):4–11.
Ding Y, Jin M, Li S, Feng D. Smart logistics based on the internet of things technology: an overview.International Journal of Logistics-research and Applications. 2020;24(4):1–23.
Faieghi MR, Azimi SM. Design an optimized PID controller for brushless DC motor by using PSO and based on NARMAX identified model with ANFIS. In: UKSim 12th International Conference on Computer Modelling and Simulation. 2010. p. 16–21.
Gowthaman E, Vinodhini V, Hussain MY, Dhinakaran SK, Sabarinathan T. Speed control of permanent magnet brushless DC motor using hybrid fuzzy proportional plus integral plus derivative controller. Energy Procedia. 2017; 117:1101–1108.
Hat MK, Ibrahim BSKK, Mohd TAT, Hassan MK. Model based design of PID controller for BLDC motor with implementation of embedded Arduino mega controller. ARPN Journal of Engineering and Applied Sciences. 2015;10(19): 8588-8594.
Kulworawanichpong T. Optimising AC Electric Railway Power Flows with Power Electronic Control. PhD Thesis, University of Birmingham, UK; 2003.
Kim K. Optimal Train Control on Various Track Alignments Considering Speed and Schedule Adherence Constraints. PhD Thesis, New Jersey Institute of Technology, USA; 2010.
Liu GF, Li HW. Design of stepper motor position control system based on DSP. In: 2017 2nd International Conference on Machinery, Electronics and Control Simulation (MECS 2017). Atlantis Press; 2016.
Lippert D, Spektor P. Rolling Resistance and Industrial Wheels. Hamilton White Paper. Hamilton, HamiltonCaster.com. 2013;(11).
Siegwart R, Nourbakhsh I, Scaramuzza D. Introduction to Autonomous Mobile Robots. 2nd ed. MIT Press; 2011.
Patil RC, Bobade CM. Speed control of Permanent Magnet Brushless DC motor with Parameter optimization. IRJET International Research Journal of Engineering and Technology. 2020;7(6):1612-1619.
Sangngern SJ. Application of LabVIEW Program for Calibration of Optical Measuring Instruments. Engineering and Technology Applications Research Program of Mahasarakham University. 2019;22(2):121–129.
Sung GM, Shen YS, Keno T, Yu CP. Internet-of-Things based controller of a three-phase induction motor using a variable-frequency driver. In: 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE). IEEE; 2019.
Shamseldin MA, EL-Samahy AA. Speed control of BLDC motor by using PID control and self-tuning fuzzy PID controller. In: 15th International Workshop on Research and Education in Mechatronics (REM). IEEE; 2014.
Mahendiran TV, Thanushkodi K. A new improved algorithm for speed control of brushless DC motor. In: IEEE International Conference on Current Trends in Engineering and Technology (ICCTET’13). 2013.
Vinnakota BP. Motor control with arduino: A case study in data-driven modeling and control design. 2012.
Wang Y, Hou Z, Li X. A novel automatic train operation algorithm based on iterative learning control theory. In: 2008 IEEE International Conference on Service Operations and Logistics, and Informatics. IEEE; 2008.
Zhang L, Liu L, Shen J, Lai J, Wu K, Zhang Z, et al. Research on stepper motor motion control based on MCU. In: 2017 Chinese Automation Congress (CAC). IEEE; 2017.