การประยุกต์ใช้งานวิศวกรรมสำหรับเกษตรอัจฉริยะในประเทศไทย

Main Article Content

จาริณี จงปลื้มปิติ
สุรินทร์ อ่อนน้อม
สมสิน วางขุนทด
พลเทพ เวงสูงเนิน

บทคัดย่อ

การพัฒนาเศรษฐกิจชีวภาพ เศรษฐกิจหมุนเวียน และเศรษฐกิจสีเขียว (Bio-Circular-Green Economy Model) เป็นวาระแห่งชาติที่จะพาไทยไปสู่เป้าหมายของการเป็นประเทศที่มีรายได้สูงและเป้าหมายการพัฒนาที่ยั่งยืน หนึ่งในอุตสาหกรรมที่สำคัญที่จะนำพาประเทศไทยไปสู่เป้าหมายดังกล่าวคืออุตสาหกรรมเกษตรและอาหาร ซึ่งเทคโนโลยีที่กำลังมีแนวโน้มที่ถูกนำมาใช้มากขึ้นอย่างต่อเนื่องคือการทำเกษตรแม่นยำ การนำเอาระเบียบวิธีการต่าง ๆ มาใช้สำหรับการทำเกษตรไม่ว่าจะเป็นการใช้อินเตอร์เน็ตทุกสรรพสิ่ง คอมพิวเตอร์ช่วยงานวิศวกรรม การสำรวจข้อมูลระยะไกล อากาศยานไร้คนขับ เหมืองข้อมูล ปัญญาประดิษฐ์ การประมวลผลภาพ การโปรแกรม ฯลฯ ซึ่งเทคโนโลยีต่าง ๆ เหล่านี้จะช่วยเพิ่มผลผลิตและลดต้นทุนในการทำการเกษตรของประเทศไทยทั้งในปัจจุบันและอนาคต

Article Details

How to Cite
1.
จงปลื้มปิติ จ, อ่อนน้อม ส, วางขุนทด ส, เวงสูงเนิน พ. การประยุกต์ใช้งานวิศวกรรมสำหรับเกษตรอัจฉริยะในประเทศไทย. featkku [อินเทอร์เน็ต]. 23 มิถุนายน 2023 [อ้างถึง 23 มกราคม 2025];9(1):48-64. available at: https://ph02.tci-thaijo.org/index.php/featkku/article/view/247674
บท
บทความวิจัย

References

Norris J and Bland J. Precision Agriculture: Almost 20% increase in income possible from smart farming | Nesta [Internet]. www.nesta.org.uk2015 [cited 2022 Sep 6]. Available from: https://www.nesta.org.uk/blog/precision-agriculture-almost-20-increase-in-income-possible-from-smart-farming/

Overview | Sustainable Development Goals | Food and Agriculture Organization of the United Nations [Internet]. [cited 2022 Aug 21]. Available from: https://www.fao.org/sustainable-development-goals/overview/en/

Worldometer - real time world statistics [Internet]. [cited 2022 Aug 21]. Available from: https://www.worldometers.info/

Thongmeethip K. Agricultural Development in Thailand in Terms of Community Development and Quality of Life. PSDS Journal of Development Studies. 2021; 4(1): 132-62.

Andrén O and Kätterer T. Agriculture Systems. Encyclopedia of Ecology. 2008; 5: 96–101.

Advantages and Disadvantages of Monoculture Farming - Conserve Energy Future [Internet]. [cited 2022 Sep 3]. Available from: https://www.conserve-energy-future.com/advantages-disadvantages-examples-monoculture.php

Boonjarat M. Volcanic Minerals and Organic Farming in Thailand. Journal of interdisciplinary innovation review. 2022; 5.

Said Mohamed E, Belal AA, Kotb Abd-Elmabod S, El-Shirbeny MA, Gad A and Zahran MB. Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science. 2021; 24: 971–81.

Gillis AS. What is the internet of things (IoT)? [Internet]. [cited 2022 Sep 3]. Available from: https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

Lavanya G, Rani C and Ganeshkumar P. An automated low cost IoT based Fertilizer Intimation System for smart agriculture. Sustainable Computing: Informatics and Systems. 2020; 28: 100300.

Andrianto H, Suhardi, Faizal A, Budi Kurniawan N and Praja Purwa Aji D. Performance evaluation of IoT-based service system for monitoring nutritional deficiencies in plants. Information Processing in Agriculture. 2023; 10(1): 52-70.

Almetwally SAH, Hassan MK and Mourad MH. Real Time Internet of Things (IoT) Based Water Quality Management System. Procedia CIRP. 2020; 91: 478–85.

What is CAE | Computer-Aided Engineering? | SimScale [Internet]. [cited 2022 Sep 4]. Available from: https://www.simscale.com/docs/simwiki/general/what-is-cae-computer-aided-engineering/

Gao D, Wang D, Wang G and Hao L. Topology optimization of conditioner suspension for mower conditioner considering multiple loads. Math Comput Model. 2013; 58: 489–96.

Zhang C, Liu R, Liu K, Yang X, Liu H, Diao M, et al. A CFD transient model of leaf wetness duration on greenhouse cucumber leaves. Computers and Electronics in Agriculture. 2022; 200: 107257.

Mashonjowa E, Ronsse F, Mubvuma M, Milford JR and Pieters JG. Estimation of leaf wetness duration for greenhouse roses using a dynamic greenhouse climate model in Zimbabwe. Computers and Electronics in Agriculture. 2013; 95: 70–81.

Xu J, Gu B and Tian G. Review of agricultural IoT technology. Artificial Intelligence in Agriculture. 2022; 6: 10–22.

Passive vs Active Sensors in Remote Sensing - GIS Geography [Internet]. [cited 2022 Sep 4]. Available from: https://gisgeography.com/passive-active-sensors-remote-sensing/

Jiang N, Li P and Feng Z. Remote sensing of swidden agriculture in the tropics: A review. International Journal of Applied Earth Observation and Geoinformation. 2022; 112: 102876.

Zahran SAES, Saeed RAH and Elazizy IM. Remote sensing based water resources and agriculture spatial indicators system. The Egyptian Journal of Remote Sensing and Space Science. 2022; 25: 515–27.

Jurado JM, López A, Pádua L and Sousa JJ. Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry. International Journal of Applied Earth Observation and Geoinformation. 2022; 112: 102856.

Sruthi S and Aslam MAM. Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data; a Case Study of Raichur District. Aquatic Procedia. 2015; 4: 1258–64.

Liu WT and Kogan FN. Monitoring regional drought using the Vegetation Condition Index. http://dx.doi.org/10.1080/01431169608949106 [Internet]. 2007 [cited 2022 Sep 10]. Available from: https://www.tandfonline.com/doi/abs/10.1080/01431169608949106

Dabrowska-Zielinska K, Kogan F, Ciolkosz A, Gruszczynska M and Kowalik W. Modelling of crop growth conditions and crop yield in Poland using AVHRR-based indices. International Journal of Remote Sensing. 2002; 23: 1109–23.

What Is a Drone? Drone Definition and Uses. | Built In [Internet]. builtin.com2022 [cited 2022 Sep 7]. Available from: https://builtin.com/drones

Singh PK and Sharma A. An intelligent WSN-UAV-based IoT framework for precision agriculture application. Computers and Electrical Engineering. 2022; 100: 107912.

Arshad S, Reza Mobasheri M, Arshad S, Morid S and Agha Alikhani M. Development of Agricultural Drought Risk Assessment Model for Kermanshah Province (Iran), using satellite data a... Related papers Monit oring and forecast ing drought impact on dryland farming areas Development of Agricultural Drought Risk Assessment Model for Kermanshah Province (Iran), using satellite data and intelligent methods. Option Mediterrianeennes Series A. 2008; 80.

He XK, Bonds J, Herbst A and Langenakens J. Recent development of unmanned aerial vehicle for plant protection in East Asia. International Journal of Agricultural and Biological Engineering. 2017; 10: 18–30.

Mogili UR and Deepak BBVL. Review on Application of Drone Systems in Precision Agriculture. Procedia Computer Science. 2018; 133: 502–9.

Boursianis AD, Papadopoulou MS, Diamantoulakis P, Liopa-Tsakalidi A, Barouchas P, Salahas G, et al. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming. A comprehensive review Internet of Things. 2022; 18: 100187.

Abbassi Y and Benlahmer H. The Internet of Things at the service of tomorrow’s agriculture. Procedia Computer Science. 2021; 191: 475–80.

5 IoT Applications in Agriculture Industry | Smart Farming Solutions [Internet]. [cited 2022 Sep 3]. Available from: https://www.biz4intellia.com/blog/5-applications-of-iot-in-agriculture/

Majumdar J, Naraseeyappa S and Ankalaki S. Analysis of agriculture data using data mining techniques: application of big data. J Big Data [Internet]. 2017 [cited 2022 Sep 6]. Available from: https://journalofbigdata.

springeropen.com/articles/10.1186/s40537-017-0077-4

What is Data Mining? [Internet]. [cited 2022 Sep 6]. Available from: https://www.techtarget.com/searchbusinessanalytics/definition/data-mining

Ait Issad H, Aoudjit R and Rodrigues JJPC. A comprehensive review of Data Mining techniques in smart agriculture. Engineering in Agriculture, Environment and Food. 2019; 12(4): 511–25.

Mohammed S, Elbeltagi A, Bashir B, Alsafadi K, Alsilibe F, Alsalman A, et al. A comparative analysis of data mining techniques for agricultural and hydrological drought prediction in the eastern Mediterranean. Computers and Electronics in Agriculture. 2022; 197: 106925.

Ait Issad H, Aoudjit R and Rodrigues JJPC. A comprehensive review of Data Mining techniques in smart agriculture. Engineering in Agriculture, Environment and Food. 2019; 12: 511–25.

Aarthi R and Sivakumar D. An Enhanced Agricultural Data Mining Technique for Dynamic Soil Texture Prediction. Procedia Computer Science. 2020; 171: 2770–8.

Groenendyk DG, Ferré TPA, Thorp KR, and Rice AK. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function. PLoS One [Internet]. 2015 [cited 2022 Sep 10]. 10:e0131299. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131299

What Is Artificial Intelligence (AI)? [Internet]. [cited 2022 Sep 6]. Available from: https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp

What is Artificial Intelligence (AI)? Definition, Benefits and Use Cases [Internet]. [cited 2022 Sep 6]. Available from: https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence

Jung J, Maeda M, Chang A, Bhandari M, Ashapure A and Landivar-Bowles J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology. 2021; 70: 15–22.

Liu LW, Ma X, Wang YM, Lu CT and Lin WS. Using artificial intelligence algorithms to predict rice (Oryza sativa L.) growth rate for precision agriculture. Computers and Electronics in Agriculture. 2021; 187: 106286.

Patrício DI and Rieder R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture. 2018; 153: 69–81.

da Silva EAB and Mendonca GV. Digital Image Processing. The Electrical Engineering Handbook. 2005; 891–910.

1. Introduction to image processing | Digital Image Processing [Internet]. [cited 2022 Sep 6]. Available from: https://sisu.ut.ee/imageprocessing/book/1

la Forgia N, Herø EH and Jakobsen HA. High-speed image processing of fluid particle breakage in turbulent flow. Chemical Engineering Science: X. 2021; 12: 100117.

Kim Y and Dodbiba G. A novel method for simultaneous evaluation of particle geometry by using image processing analysis. Powder Technology. 2021; 393: 60–73.

Patil DB, Nigam A and Mohapatra S. Image processing approach to automate feature measuring and process parameter optimizing of laser additive manufacturing process. Journal of Manufacturing Processes. 2021; 69: 630–47.

Munawar HS, Hammad AWA and Waller ST. A review on flood management technologies related to image processing and machine learning. Automation in Construction. 2021; 132: 103916.

Xu N. Image Processing Technology in Agriculture. Journal of Physics: Conference Series. 2021; 1881: 32097.

Samajpati BJ and Degadwala SD. Hybrid approach for apple fruit diseases detection and classification using random forest classifier. International Conference on Communication and Signal Processing. 2016; 1015–9.

Singh V, Varsha and Misra AK. Detection of unhealthy region of plant leaves using image processing and genetic algorithm. Conference Proceeding - 2015 International Conference on Advances in Computer Engineering and Applications. 2015; 1028–32.

Suganya E, Sountharrajan S, Shandilya SK and Karthiga M. IoT in Agriculture Investigation on Plant Diseases and Nutrient Level Using Image Analysis Techniques. Internet of Things in Biomedical Engineering. 2019; 117–30.

Jia B, Wang W, Ni X, Lawrence KC, Zhuang H, Yoon SC, et al. Essential processing methods of hyperspectral images of agricultural and food products. Chemometrics and Intelligent Laboratory Systems. 2020; 198: 103936.

What is an IDE? [Internet]. www.redhat.com2019 [cited 2022 Sep 7]. Available from: https://www.redhat.com/en/topics/middleware/what-is-ide

Wilkins J. What is Computer Programming? [Internet]. www.freecodecamp.org/2021 [cited 2022 Sep 7]. Available from: https://www.freecodecamp.org/news/what-is-programming/

Dhanya VG, Subeesh A, Kushwaha NL, Vishwakarma DK, Nagesh Kumar T, Ritika G, et al. Deep learning based computer vision approaches for smart agricultural applications. Artificial Intelligence in Agriculture [Internet]. 2022 [cited 2022 Oct 4]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589721722000174

Din A, Ismail MY, Shah B, Babar M, Ali F and Baig SU. A deep reinforcement learning-based multi-agent area coverage control for smart agriculture. Computers and Electrical Engineering. 2022; 101: 108089.

กรรณิการ์ ดวงเนตร และ สุพรรณิกา ลือชารัศมี การเปลี่ยนแปลงโครงสร้างราคาพืชเศรษฐกิจของประเทศไทย. วารสารเศรษฐศาสตร์ มหาวิทยาลัยเชียงใหม่. 2018; 22(1): 59-92.