An Automatic Egg Collection System Using a Robotic Arm Controlled by Machine Learning and Deep Learning in Free-Range Chicken Farming

Main Article Content

Apiwat Boonkong
Umaporn Phiwchomphoo1
Jindarat Pikulsri

Abstract

This research presents the use of a robotic arm system for collecting chicken eggs, with motor control and motion planning based on machine learning techniques. A 3D camera is integrated to enable automatic egg localization using a deep learning method (YOLOv5s). The overall framework simulates egg collection in a free-range chicken farming environment, where nests are specifically prepared for hens to lay eggs. This work lays the foundation for future development of mobile robots capable of navigating various environments to collect eggs. The study demonstrates the effectiveness of machine learning (FFNN) in controlling the robotic arm for egg picking and evaluates the accuracy of egg localization using the deep learning model. Challenges encountered during egg-picking experiments are also discussed. Based on experiments with varying numbers of hidden nodes in the machine learning model, the robotic arm achieved egg-picking accuracy between 75% and 90%.

Article Details

How to Cite
1.
Boonkong A, Phiwchomphoo1 U, Pikulsri J. An Automatic Egg Collection System Using a Robotic Arm Controlled by Machine Learning and Deep Learning in Free-Range Chicken Farming. featkku [internet]. 2025 Jun. 21 [cited 2025 Dec. 10];11(1):19-2. available from: https://ph02.tci-thaijo.org/index.php/featkku/article/view/259263
Section
Research Articles
Author Biographies

Apiwat Boonkong, Nakhon Phanom University

Department of Computer Engineering, Faculty of Engineering, Nakhon Phanom University, Nakhon Phanom

Umaporn Phiwchomphoo1

Department of Computer Engineering, Faculty of Engineering, Nakhon Phanom University, Nakhon Phanom

Jindarat Pikulsri

Department of Computer Engineering, Faculty of Engineering, Nakhon Phanom University, Nakhon Phanom

References

Kittiwong K, Saeliw K. การผลิตและการตลาดไข่ไก่ในประเทศไทย. Kaen Kaset. 2019;47(Suppl 1):890–4.

Molee W, Khempaka S, Homta C. ผลของการเลี้ยงไก่ไข่แบบปล่อยต่อสมรรถนะการให้ผลผลิต คุณภาพไข่ ปริมาณคอเลสเตอรอล และองค์ประกอบของกรดไขมันในไข่. Nakhon Ratchasima: Suranaree University of Technology; 2015.

Klompunya A, Srikitkasemwat K, Sitthikraipong R. ผลของระบบการเลี้ยงแบบปล่อยอิสระและแบบกรงตับต่อคุณภาพไข่ในไก่ไข่อายุ 19–31 สัปดาห์. Agric Sci J. 2017;35(2 Suppl 2):920–4.

Sharma A, Jain A, Gupta P, Chowdary V. Machine learning applications for precision agriculture: a comprehensive review. IEEE Access. 2021;9:4843–78.

Pitla S, Bajwa S, Bhusal S, Brumm T, Brown-Brandl TM, Buckmaster DR, et al. Ground and aerial robots for agricultural production: opportunities and challenges. CAST Issue Pap. 2020;70:1–20. Available from: https://digitalcommons.unl.edu/biosysengfacpub/727

Benos L, Tagarakis AC, Dolias G, Berruto R, Kateris D, Bochtis D. Machine learning in agriculture: a comprehensive updated review. Sensors (Basel). 2021;21(11):3758.

Spanaki K, Sivarajah U, Fakhimi M, Despoudi S, Irani Z. Disruptive technologies in agricultural operations: a systematic review of AI-driven AgriTech research. Ann Oper Res. 2021. doi:10.1007/s10479-020-03922-z

Wang CH, Xie BX, Chang CL. Design and implementation of livestock robot for egg picking and classification in the farm. In: Proceedings of the 2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS); 2019 May 31–June 3; Okinawa, Japan. New York: IEEE; 2019. p. 161–5.

Jermann T, Kolvenbach H, Esquivel Estay F, Krämer K, Hutter M. An efficient multi-robot arm coordination strategy for pick-and-place tasks using reinforcement learning. arXiv [Preprint]. 2024 [cited 2025 May 29]. Available from: https://arxiv.org/abs/2409.13511

Tian X, Pan B, Bai L, Wang G, Mo D. Fruit picking robot arm training solution based on reinforcement learning in digital twin. J ICT Stand. 2023;11(3):261–82.

Wu Z, Zhang H, Fang C. Research on machine vision online monitoring system for egg production and quality in cage environment. Poult Sci. 2025;104:104552.

Yang X, Zhang J, Paneru B, Lin J, Bist RB, Lu G, et al. Precision monitoring of dead chickens and floor eggs with a robotic machine vision method. AgriEngineering. 2025;7(2):35.

Çevik KK, Koçer HE, Boga M. Deep learning based egg fertility detection. Vet Sci. 2022;9(10):574.

NVIDIA Corporation. Jetson Xavier NX: World's smallest AI supercomputer [Internet]. Santa Clara (CA): NVIDIA; [cited 2025 Feb 9]. Available from: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/

Jocher G. Ultralytics YOLOv5 [Internet]. 2020 [cited 2025 Feb 10]. Available from:https://github.com/ultralytics/yolov5

CVAT.ai Corporation. CVAT: Computer Vision Annotation Tool [Internet]. Palo Alto (CA): CVAT.ai Corporation; [cited 2025 Jan 20]. Available from: https://www.cvat.ai/

Heymsfeld R. Arduino Neural Network [Internet]. Hobbizine; [cited 2025 Jan 19]. Available from: http://robotics.hobbizine.com/arduinoann.html

Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A. The Pascal Visual Object Classes (VOC) Challenge. Int J Comput Vis. 2009;88(2):303–38.