Materials on Wheels: Moving to Lighter Auto-bodies

Main Article Content

Paritud Bhandhubanyong
John T. H. Pearce

Abstract

The weight of the automobile body has been the serious concerned as it has negative effect on the fuel consumption and pollution emission. Steel materials have been applied as body parts since the beginning of the automotive industry development. Continuous research and development in term of composition, melting and refining, heat treating, etc., resulted in variety of many high quality materials such as Dual -Phase (DP) Steel, Transformation-Induced Plasticity Steel (TRIP) , Interstitial Free (IF) Steel., etc. Non ferrous and reinforce polymers are also applied as alternatives for lighter weight and ease of fabrication. Historical development of these materials with technical implication is discussed with the aim for better understanding of materials application for body parts.

Article Details

How to Cite
Bhandhubanyong, P., & Pearce, J. T. H. (2019). Materials on Wheels: Moving to Lighter Auto-bodies. INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY (ISJET), 2(1), 27–36. Retrieved from https://ph02.tci-thaijo.org/index.php/isjet/article/view/175907
Section
Research Article

References

[1] G. M. Davies, and B. G. Goodyear, “Aluminium in automotive applications”, Metals & Materials, vol. 7, pp. 86-91, Feb. 1991.
[2] G. Davies, and R. A. Easterlow, “Automotive design and materials selection”, Metals & Materials, vol. 1, pp. 20-25
Jan. 1985.
[3] United States Automotive Materials Partnership LLC (USAMP) & Dept. of Energy (DOE) Final Report Compilation
OR22910, USAMP, Southfield, U.S.A., Apr. 2011.
[4] American Iron & Steel Institute (AISI) “Ultralight SteelAuto Body – Final Report”, Washington D.C., U.S.A., 1998.
[5] R. B. Hundy, “The Corrosion of Motor Car Bodies,” The Metallurgist & Materials Technologist, vol. 5, no. 3,
pp. 119-125, Mar. 1973.
[6] M. Saito, S. Iwatsuki, K.Yasunaga, and K. Andoh, “Development of aluminium body for the most fuel efficient vehicle”, JSAE Review, vol. 21, no. 4, pp. 511-516, Oct. 2000.
[7] H. Adam, L. Patberg, M. Philipps, and R. Ditmann, “Testing of New Composite Side Door Concepts”, in Proceedings of the 1998 SAE Congress & Exposition, SAE Special Publications, vol.1320, 1998, pp. 23-30,
[8] Ultra Light Steel Auto Closures: Overview Report, pp. 44, May. 2001. Available www.autosteel.org/programs/ulsac
[9] Advanced Vehicle Concepts: Overview Report, pp. 149, Jun. 2002. Available www.autosteel.org/programs/ulsab-avc
[10] FutureSteelVehicle – Nature’s Way to Mobility: Overview Report, pp. 79, Apr. 2011. Available www.worlsautosteel.
org/projects/future-steel-vehicle
[11] C. T. Broek, “FutureSteelVehicle: leading edge innovation for steel body structures”, Ironmaking & Steelmaking vol. 39, no. 7, pp. 477-482, 2012.
[12] M. Woodcock, “Steeling ourselves for the electric vehicle revolution”, Ironmaking & Steelmaking, vol. 39, no. 4,
pp. 254-257, 2012.
[13] S. Keeler, M. Kimchi, and P. J. Mooney, “Advanced High-Strength Steels Application Guidelines Version 6.0,
pp. 314, Apr. 2017.
[14] S. Kalpakjian, “Ch.2 Fundamentals of the Mechanical Behavior of Materials” in “Manufacturing Processes for
Engineering Materials”, Addison Wesley, Chicago, USA.
[15] A. Konieczny, “On Formability Assessment of the Automotive Dual Phase Steels”, SAE Technical Paper 2001-01-3075, pp. 8, 2001.
[16] A. Konieczny, “On the Formability of Automotive TRIP Steels”, SAE Technical Paper 2003-01-0521, pp. 8, 2003.
[17] W. B. Hutchinson, “Control of Texture in Low C Steels”, Int. Met. Reviews, vol. 29, no. 1, pp. 25-42, 1984.
[18] B. Hutchinson, “PracticalAspects of Texture Control in Low Carbon Steel”, Mat. Sc. Forum, vol. 157-162, pp. 1917-1928, Jan. 1994.
[19] K. Banerjee, “Physical Metallurgy and Drawability of Extra Deep Drawing and Interstitial Free Steels”, Ch.7 in
“Recrystallization”, K. Sztwiertnia, (Ed.) ISBN 978 953 51 0122 2, Mar. 2012.
[20] S. Hoile, “Processing and properties of mild interstitial free steels”, Mat. Sc. & Tech., vol. 16, no. 10, pp. 1079-1093, 2000.
[21] W. Gan, S. S. Babu, N. Kapusta, and R. H. Wagoner, “Microstructural Effects on the Springback of Advanced High-Strength Steel”, Met. & Mat. Trans.
[22] H. Lim, M. G. Lee, J. H. Sung, J. H. Kim, and R. H. Wagoner, “Time-dependent springback of advanced high strength steels”, Int. J. of Plasticity, vol. 29, pp. 42-59, Feb. 2012.
[23] K. J. Irvine, F. B. Pickering, and T. Gladman, “Grain-refined C-Mn Steels”, J.I.S.I., vol. 205, pp. 161-172, 1967.
[24] W. B. Morrison, “Microalloy steels – the beginning,” Materials Science & Technology, vol. 25, no. 9, pp. 1066-1073, 2009.
[25] S. S. Hansen, J. B. Vander Sande, and M. Cohen, “Niobium carbonitride precipitation and austenite recrystallisation in hot rolled microalloyed steels”, Met. Trans. A, vol. 11, no. 5, pp. 387-402, Mar. 1980.
[26] M. Charleux, W. J. Poole, M. Militzer, and A. Deschamps, “Precipitation behaviour and Its Effects on Strengthening
of an HSLA-Nb/Ti Steel”, Met. & Mat. Trans. A, vol. 32A, pp. 1635-1647, Jul. 2001.
[27] S. Vervynckt, K. Verbeken, B. Lopez, and J. J. Jonas, “Modern HSLA steels and the role on non-recrstallisation temperature”, Int. Mat. Reviews, vol. 57, no. 4, pp. 187-2017, 2012.
[28] T. N. Baker, “Microalloyed steels”, Ironmaking and Steelmaking, vol. 43 no. 4, pp. 264-307, 2016.
[29] M. Takahashi, “Sheet Steel Technology for the Last 100 Years: Progress in Sheet Steels in Hand with the Automotive Industry”, ISIJ International, vol. 55, no. 1, pp. 79-88, 2015.
[30] M. S. Rashid, “Dual Phase Steels”, Ann. Rev. Mater. Sc., vol. 11, pp. 245-266, 1981.
[31] G. Krauss, “IFHTSE Global 21: Part 7 – Thermal processing and past, present and future development of automotive sheet steels”, Int. Heat Treatment & Surf. Eng., vol. 2, no. 3/4 pp. 92-98, 2008.
[32] C. C. Tasan et al., “An Overview of Dual Phase Steels: Advances in Microstructure-Oriented Processing and
Micromechanically Guided Design”, Annu. Rev. Mater. Res., vol. 43, pp. 391-431, 2015.
[33] T. Senuma, “Physical Metallurgy of Modern High Strength Steel Sheets”, ISIJ International, vol. 41, no. 6, pp. 520-532, 2001.
[34] M. Takahashi, “Development of High Strength Steels for Automobiles”, Nippon Steel Technical Report, no. 88, pp. 2-7, Jul. 2003.
[35] A. R. Marder, “Factors Affecting Ductility of Dual Phase Alloys”, Formable HSLA and Dual Phase Steels, TMS AIME,
Warrendale PA, pp. 87-98, 1979.
[36] O. Matsumura, Y. Sakuma, and H. Takechi, “Enhancement of Elongation by Retained Intercritical Annealed Austenite in 0.4C-1.3Si-0.8Mn Steel”, Trans. ISIJ, vol. 27, pp. 570-579, 1987.
[37] I. D. Choi, D. M. Bruce, S. J. Kim, C. G. Lee, S. H. Park, D. K. Matlock, and J. G. Speer, Deformation Behavior of Low Carbon TRIP Sheet Steels at High Strain Rates”, ISIJ. Int., vol. 42, no. 12, pp. 1483-1489, 2002.
[38] P. A. Jacques, E. Girault, Ph. Harlet, and F. Delannay, “The Developments of Cold-rolled TRIP-assisted Multiphase
Steels. Low Silicon TRIP-assisted Multiphase Steels”, ISIJ. Int., vol. 41, no. 9, pp. 1061-1067.
[39] O. Kwon, K. Lee, G. Kim, and K. G. Chin, “New Trends in Advanced High Strength Steel Developments For Automotive Application”, Mat. Science Forum, vols. 638-642, 136-141, 2010.
[40] O. Bouaziz, S, Allain, C. P. Scott, P. Cugy, and D. Barbier, “High manganese austenitic twinning induced plasticity
steels: A review of the microstructure properties relationships”, Current Opinion in Solid State & Mat, Science, vol. 15,
pp. 141-168, 2011.
[41] M. Koyama, T. Sawaguchi, T. Lee, C. S. Lee, and K. Tsuzaki, “Work hardening associated with the ε-martenste transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels”, Mat. Sc. & Eng. A, vol. 528, pp. 7310-7316, 2011.
[42] B. C. De Cooman, K. G. Chin, and J. Kim, “High Mn TWIP Steels for Automotive Applications”, Ch.6 in New Trends
and Developments in Automotive System Engineering, Available www.intechopen.com/books/
[43] R. W. Neu, “Performance and Characterization of TWIP Steels for Automotive Applications”, Mat. Performance &
Characterization, vol. 2, no. 1, pp. 244-284, 2013.
[44] D. K. Matlock, and J. G. Speer, “Third Generation of AHSS: Microstructure Design Concepts”, Ch.11 in Microstructure and Texture in Steels and Other Materials, A. Haldar. Ed., S. Suwas, and D. Bhattacharjee, London: Springer, 2009, pp. 185-203.
[45] D. K. Matlock, J. G. Speer, J. G. De Moor, E. Gibbs, “Recent developments in advanced high strength sheet steels for automotive applications – an overview”, JESTECH, vol. 15 no. 1, pp. 1-12, 2012.
[46] J. G. Speer, F. C. Rizzo Assuncao, D. K. Matlock, D. V. Edmonds, “The Quenching and Partioning Process: Background and Recent Progress”, Material Research, vol. 8, no. 4, pp. 417-423, 2005.
[47] E. Billur, and T. Altan, “Three generations of advanced high-strength steels for automotive applications, Part III”
Stamping Journal March/April 2014.
[48] M. J. Merwin, “Microstructure & properties of cold-rolled and annealed low-C manganese TRIP steels”, Iron & Steel
Technology, vol. 5, no. 10, pp. 6-84, Oct. 2008.
[49] W. W. Sun, Y. X. Wu, S. C. Yang, and C. R. Hutchinson, “Advanced high strength steel (AHSS) development through chemical patterning of austenite”, Scripta Mat., vol. 146 pp. 60-63, Mar. 2018.
[50] H. K. D. H. Bhadeshia, “Nanostructured bainite”, Proc.R. Soc. A., vol. 466, pp. 3-18, 2010.
[51] C. Garcia-Mateo, F. G. Caballero, and H. K. D. H. Bhadeshia, “Acceleration of LowTemperature Bainite”, ISIJ. International, vol. 43, no. 11, pp. 1821-1825, 2003.
[52] X. D. Wang, N. Zhong, Y. H. rong, and T. Y. Hsu, “Novel ultra-high strength nanolath martensitic steel by quenching – partitioning – tempering process”, J. Mat. Research, vol. 24, no. 1, pp. 260-267, Jan. 2009.
[53] D. W. Fan, H. S. Kim, S. Birosa, and B. C. De Cooman, “Critical Review of Hot Stamping Technology for Automotive
Steels”, Proceedings of Materials Science & Technology Conference – MS&T 2007, Detroit, Michigan, 2007. pp. 13.
[54] A. Naganathan, D. Ravindran, and T. Altan, “Hot-stamping boron-alloyed steels for automotive parts”, Stamping Journal, pp. 12-13, Mar/Apr. 2011.
[55] K. S. Choi, W. N. Liu, and M. A. Khaleel, “Influence of manufacturing processes and microstructures on the
performance and manufacturability of advanced high strength steels”’, J. Engineering Materials & Technology, vol. 131,
no. 4, pp. 041205-041213, 2009.
[56] E. Billur, and T. Altan, “Challenges in Forming Advanced High Strength Steels”, Proceedings of New Developments
in Sheet Metal Forming, Stuttgart, Germany, May 2-4, 2012.
[57] “The Aluminium Automotive Manual”, Version 2013, European Aluminium Associtaion, pp. 84, 2013.
[58] A. I. Taub, and A. A. Luo, “Advanced Lightweight Materials and Manufacturing Processes for Automotive Applications”, MRS Bulletin, vol. 40, pp. 1045-1053, 2015.
[59] G. Djukanovic, “Steel Versus Aluminium: Who’s Winning the Light-weighting Battle in Cars”, Available https://
aluminiuminsider.com/author/goran-djukanovic/
[60] F. Henriksson, and K. Johansen, “On Material Substitution in Automotive BIWs – From Steel to Aluminium Body
Sides”, Procedia CIRP, vol. 50, pp. 683-688, 2016.
[61] D. Edwards, “Classic design meets modern materials”, Materials World, vol. 5, pp. 577-579, 1997.
[62] N. J. Kim, “Critical Assessment 6: Magnesium sheet alloys: viable alternatives to steels?”, Mat. Sc. & Technology, vol. 30, no. 15, pp. 1925-1928.
[63] A. Coomber, and C. Loh, “Magnesium for motoring”, Materials World, vol. 16, pp. 38-39, Nov. 2008.
[64] J. A. Carpenter Jr., “FreedomCAR and Casting”, AFS Trans. Paper 08-179, pp. 11. 2008.
[65] A. A. Luo, “Magnesium casting technology for structural applications”, J. Magnesium & Alloys, vol. 1, pp. 2-22, 2013.
[66] S. You, Y. Huang, K. U. Kainer, and N. Hort, “Recent research & development on wrought magnesium alloys”, J. Magnesium & Alloys, vol. 5, pp. 239-253, 2017.
[67] M. Kiani, I. Gandikota, M. Rais-Rohani, and K. Motoyama, “Design of lightweight magnesium car body structure under crash and vibration constraints”, J. Magnesium & Alloys, vol. 2, pp. 99-108, 2014.
[68] D. Carney, “Ferrari prefers aluminium over carbon fiber”, SAE Automotive Engineering, Available https://articles.sae.
org/10391/
[69] Y. Chastel, and L. Passemard, “Joining technologies for future automobile multi-materials modules”, Procedia Engineering, vol. 81, pp. 2104-2110, 2014.
[70] G. Meschut, V. Janzen, and T. Olferman, “Innovative and Highly Productive Joining Technologies for Multi-Material
Lightweight Car Body Structures”, JMEPEG, vol. 23, pp. 1515-1523, 2014.
[71] G. Meschut, M. Matzke, R. Hoerhold, and T. Olfermann, “Hybrid technogies for joining ultra-high strength boron
steels with aluminium alloys for lightweight car body structures”, Procedia CIRP, vol. 23, pp. 19-23, 2014.
[72] H. Kim, C. Mcmillan, G. A. Keolian, and S. J. Skerlos, “Greenhouse Gas Emissions Payback for Lightweighted
Vehicles Using Aluminium and High Strength Steel”, J. Industrial Ecology, vol. 14, no. 6, pp. 1530-9290, 2010.
[73] R. Moderasi, S. Pauliuk, A. N. Lavik, and D. B. Muller, “Gobal Carbon Benefits of Materials Substitution in Passenger
Cars until 2050 and the Impact on the Steel and Aluminum Industries”, Environ. Sci. Technol., vol. 48, pp. 10776-10784, 2014.
[74] J. Hafer, E. Wilhelm, and W. Schenler, “Comparing the Mass, Energy and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles” J. of Sustainable Development of Energy, Water and Environment Systems, vol. 2, no. 3, pp. 284-295, 2014.
[75] S. Poulikidou et al., “A material selection approach to evaluate material substitution for minimizing the life cycle
environmental impact of vehicles”. Materials & Design, vol. 83, pp. 704-712, 2015.
[76] Lightweighting with Advanced High-Strength Steel Produces Lower Greenhouse Gas Emissions than Lightweighting
with Aluminum. Available www.steelsustainability.org/automotive/auto-ghg