Materials on Wheels: Batteries for Electric Vehicles

Main Article Content

Paritud Bhandhubanyong
John T. H. Pearce


The Thai government is placing the advanced automotive industry sector among the 12-targeted industries as the key drivers for economic and social development. So, all kinds of Electric Vehicles (EV), namely, Battery Electric Vehicles (BEV), Hybrid Electric Vehicles (HEV), Plug-in Hybrid Electric Vehicles (PHEV), and Fuel Cell Electric Vehicles (FCEV) will be the focus for Thai automotive sector promotion by the government. Two key components of EVs are the motor and battery pack. Present battery types and major characteristics are elaborated and discussed with emphasis on materials development, obstacles, and appropriate solutions for the future sustainability of EV manufacturing and application.

Article Details

How to Cite
Bhandhubanyong, P., & T. H. Pearce, J. . (2022). Materials on Wheels: Batteries for Electric Vehicles. INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND TECHNOLOGY (ISJET), 6(1), 41–59. Retrieved from
Academic Article
Author Biography

Paritud Bhandhubanyong, Panyapiwat Institute of Management

Panyapiwat Institute of Management

85/1 Moo2, Chaengwattana Rd,

Bang Talad, Pakkerd, Nonthaburi 11120, Thailand



C. E. Thomas, “Fuel Cell and Battery Electric Vehicles Compared,” International Journal of Hydrogen Energy, vol. 34, no. 15, pp. 6005-6020, Aug. 2009.

F. Un-Noor, S. Padmanaban, L. Mihet-Popa et al., “A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts and Future Direction of Development,” Energies, vol. 10, no. 8, p. 84, Aug. 2017.

International Energy Agency. (2021, Jul. 5). Global EV Outlook 2020. [Online]. Available:

S. Baltac and S. Slater. (2021, Jul. 10). Batteries on Wheels: The Role of Battery Electric Cars in the EU Power System and Beyond. [Online]. Available: https: www.elementenergy.

/upload/2019/06/Batteries on wheelsPublicreport 4th-June-2019.pdf

S. Baltac and S. Slater. (2010, Jun. 4). Batteries on Wheels: The Role of Battery Electric Cars in the EU Power System and Beyond. [Online]. Available: http://www.elementenergy.

/06/Batteries_on_wheels Public-report_4th-June-2019.pdf

Clean Energy Ministerial. (2021, Jul. 10). EV30/30 Increasing. [Online]. Available: https://www.

I. Boudway. (2021, Jul. 10). Batteries for Electric Cars Speed Towards a Tipping Point. [Online]. Available: models

J. Kurtz, S. Sprik, G. Saur et al., “On-Road Fuel Cell Electric Vehicles Evaluation: Overview,” Technical Report National Renewable Energy Laboratory Golden, Co., USA, Re.NREL/TP-5400-73009. May 2019.

Y. Manoharan, S. E. Hosseini, B. Butler et al., “Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect,” Applied Sciences, vol. 9, p. 17, Jun. 2019.

Y. Wang, D. F. R. Diaz, K. S. Chen et al., “Materials, Technological Status and Fundamentals of PEM Fuel Cells-a Review,” Materials Today, vol. 32, pp. 178-203, Feb. 2020.

T. Christen and M.W. Carlen, “Theory of Ragone Plots,” Journal of Power Engineering, vol. 91, p. 216, Dec. 2000.

F. R. Kalhammer, B. M. Kopf, D. Swan et al. (2007, Apr. 10). State of California Air Resources Board Sacramento, California, USA. [Online]. Available.


E. Rahimzei, K. Sann, and M. Vogel. (2015, May 2). Kompedium: Li-Ionen Betterien, Frankfurt-am-Main, Germany: Verband der Elctrotechnik. [Online]. Available:


B. D. McCloskey, “Expanding the Ragone Plot: Pushing the Limits of Energy Storage,” Journal of Phys, Chem, Letters, vol. 6, pp. 3592-3593, Jun. 2015.

S. C. Lee and W. Y Jung, “Analogical Understanding of the Ragone Plot and a New Categorization of Energy Devices,” Energy Procedia, vol. 88, pp. 526-530, Jun. 2016.

M. Guarnieri, “Looking Back to Electric Cars,” in Proc. 3rd IEEE Hist. Electro-Technol, 2012, pp. 1-6.

EUROBAT. (2017, Jun. 20). Battery Technology for Motive Off-Road Application. [Online]. Available:

T. Paul, T. Mesbahi, S. Durand et al., “Sizing of Lithium-Ion Battery/Sup Ercapacitor Hybrid Energy Storage System for Forklift Vehicle,” Energies, vol. 13, p. 18, Jul. 2020.

EUROBAT. (2014, May 14). A Review of Battery Technologies for Automotive Applications. [Online]. Available:

P. T. Moseley, D.A. Rand, and K. Peters. “Enhancing The Performance of Lead-Acid Batteries with Carbon-In Pursuit of Understanding,” Journal of Power Sources, vol. 295, pp. 268-274, Nov. 2015.

J. Yang, C. Hui, H. Wang et al., “Review on the Research of Failure Modes and Mechanisms for Lead-Acid Batteries,” International Journal of Energy Research, vol. 41, pp. 336-352, Mar. 2017.

H. Hao, K. Chen, H. Liu et al., “A Review of the Positive Electrode Additives in Lead-Acid Batteries,” International Journal of Electrochemical Science, vol.13, no. 3, pp. 2329- 2340, Mar. 2018.

S. F. Tie and C. W. Tan, “A Review of Energy Sources and Energy Management Systems in Electric Vehicles,” Renewable & Sustainable Energy Reviews, vol. 20, pp. 82-102, Apr. 2013.

M. A. Hannan, M. M. Hoque, and A. Mohamed “Review of Energy Storage Systems for Electric Vehicle Applications: Issues and Challenges,” Renewable & Sustainable Energy Reviews, vol. 69, pp. 771-789, Mar. 2017.

C. C. Yang, C. C. Wang, M. M. li et al., “A Start of the Renaissance for Nickel Metal Hydride Batteries: A Hydrogen Storage Alloy Series with an Ultra-Long Cycle Life”, Journal of Materials Chemistry A, vol. 5, pp. 1145-1152, Dec. 2017.

B. G. Pollet, I. Staffell, and J. L. Shang, “Current Status of Hybrid, Battery and Fuel Cell Electric Vehicles: From Electrochemistry to Market Prospects,” Electrochimica Acta, vol. 84, pp. 235-249, Dec. 2012.

S. Chang, K. H. Young, and C. Fierro, “Reviews on the US Patents Regarding Nickel/Metal Hydride Batteries,” Batteries, vol. 2, no. 10, p. 29, Apr. 2016.

K. H. Young and S. Yasuoka, “Capacity Degradation Mechanisms in Nickel/Metal Hydride Batteries,” Batteries, vol. 2, no. 3, p. 28, Mar. 2016.

B. Sanchez, J. C. Argucha, and J. W. Smith. (2021, Jul. 22). Performance Characterization of 1998 Ford Ranger Electric with Nickel/Metal Hydride Battery. [Online]. Available:


S. Boschert, Plug-in Hybrids: The Cars that Will Recharge America, New Society Publishers, Gabriola Island, Canada, 2006, p. 213.

K. H. Young, X. Cai, and S. Chang, “Reviews on the Chinese Patents Regarding Nickel/Metal Hydride Batteries”, Batteries, vol. 3, no. 24, p. 60, Aug. 2017.

T. Ouchi, K. H. Young, and D. Moghe, “Reviews on the Japanese Patent Applications Regarding Nickel/Metal Hydride Batteries,” Batteries, vol. 2, no. 21, p. 30, Jun. 2016.

S. Chang, K. H. Young, and Y. L. Lien, “Reviews of European Patents on Nickel/Metal Hydride Batteries,” Batteries, vol. 3, no. 25, p. 16, Aug. 2017.

K. H. Young, “Research in Nickel/Metal Hydride Batteries 2017”, Batteries, vol. 4, no. 1, p. 5, Feb. 2018.

S. B. Cao and F. Y. Huang, “Analysis of the Status Quo and Development of Ni-MH Batteries for Hybrid Electric Vehicles,” Batteries Bimonthly, vol. 46, pp. 289-291, Apr. 2016.

K. H. Young, S. Chang, and X. Lin, “C14 Laves Phase Metal Hydride Alloys for NI/MH Batteries Applications,” Batteries, vol. 3, no. 27, Sep. 2017.

X. Sun, Z. Li, X. Wang, and C. Li, “Technology Development of Electric Vehicles: A Review,” Energies, vol. 13, no. 90, p. 29, Aug. 2020.

K. Liu, W. Zhou, D. Zhu et al., “Excellent High-Rate Capability of Micron Sized Co-Free Α-Ni (OH)2 for High Power Ni-MH Battery,” Journal Alloys & Compounds, vol. 768, no. 5, pp. 269-276, Nov. 2018.

A. Chu, Y. Yian, J. Zu et al., “The Design and Investigation of a Cooling System for a High-Power Ni-MH Battery Pack in Hybrid Electric Vehicles,” Applied Sciences, vol. 10, p. 1660, Mar. 2020.

J. B. Goodenough, “How We Made the Li-Ion Rechargeable Battery,” Nature Electronics, vol. 1, p. 204, Mar. 2018.

N. Nitta, F. Wu, J. T. Lee et al., “Li-ion Battery Materials: Present and Future,” Materials Today, vol. 18, pp. 252-264. Jun. 2015.

Y. L. Ding, Z. P. Cano, A. Yu et al., “Automotive Li-Ion Batteries: Current Status and Future Perspectives,” Electrochemical Energy Reviews, vol. 2, no. 1, pp. 1-28, Mar. 2019.

Z. P. Cano, D. Banham, S. Ye et al., “Batteries and Fuels Cells for Emerging Electric Vehicle Markets,” Nature Energy, vol. 3, pp. 279-289, Apr. 2018.

Y. Miao, P. Hynan, A. von Jouanne et al., “Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancement,” Energies, vol. 12, p. 20, Mar. 2019.

X. Zeng, M. Li, D. A. El-Hady et al., “Commercialization of Lithium Battery Technology for Electric Vehicles,” Advanced Energy Materials, vol. 9. No. 27, Jul. 2019.

P. V. Tichelen, “Preparatory Study on Ecodesign and Energy Labeling of Batteries,” European Commission Report, Brussels, BE. Rep. FWC ENER/C3/2015-619-Lot 1, Aug. 2019.

A. Li, A. C. Y. Yuen, W. Wang et al., “A Review of Lithium-Ion Battery Separators Towards Enhanced Safety Performance and Modelling Approaches,” Molecules, vol. 26, pp. 15, Jan. 2021.

H. C. Kim, T. J. Wallington, R. Arsenault et al., “Cradle-toGate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis,” Environmental Science & Technology, vol. 50, pp. 7715-7722, Jun. 2016.

M. Schönemann, Battery Production and Simulation. Brussels, BE: Springer, Cham, 2017, pp. 11-37.

W. Xu, J. Wang, F. Ding et al., “Lithium metal Anodes for Rechargeable Batteries,” Energy & Environmental Science, vol. 7, pp. 513-537, Oct. 2014.

Y. Li, Y. Lu, P. Adelhelm et al., “Intercalation Chemistry of Graphite: Alkali Metal Ions and Beyond,” Chemical Society. Review, vol. 7, p. 34, Jul. 2019.

E. Peled and S. Menken, “Review-SEI: Past, Present and Future,” Journal of the Electrochemical Society, vol. 164, no. 7, pp. 1703-1719, Jun. 2017.

S. K. Heiskanen, J. Kim, and B. L. Lucht, “Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries,” Joule, vol. 3, pp. 2322-2333, Oct. 2019.

J. F. Ding, R. Xu, C. Yan et al., “A Review on the Failure and Regulation of Solid Electrolyte Interphase in Lithium Batteries,” Journal of Energy Chemistry, vol. 59, pp. 306-319, Aug. 2021.

M. J. Lain, I. R. Lopez, and E. Kendrick, “Electrolyte Additions in Lithium-Ion EV Batteries and the Relationship of the SEI Composition to Cell Resistance and Lifetime”, Electrochem, vol. 1, pp. 200-216, Jun. 2020.

M. A. Gialampouki, J. Hashemi, and A. A. Peterson, “The Electrochemical Mechanisms of Solid–Electrolyte Interphase Formation in Lithium-Based Batteries,” The Journal of Physical Chemistry, vol. 123, pp. 20084-20092, Aug. 2019

M. Li, J. Lu, and X. Ji, “Design Strategies for Nonaqueous Multivalent-Ion and Monovalent-Ion Battery Anodes,” Nature Reviews Materials, vol. 5, 276-294, Feb. 2020.

W. Huang, P. M. Attia, H. Wang et al., “Evolution of the Solid–Electrolyte Interphase on Carbonaceous Anodes Visualized by Atomic-Resolution Cryogenic Electron Microscopy,” Nano Letters, vol. 19, pp. 5140-5148, Jul. 2019.

Y. Yuan, K. Amine, J. Lu et al., “Understanding Materials Challenges for Rechargeable Ion Batteries with in Situ Transmission Electron Microscopy,” Nature Communications, vol. 8, p. 14, Aug. 2017.

J. Duan, X. Tang, H. Dai et al., “Building Safe Lithium-Ion Batteries for Electric Vehicles,” Electrochemical Energy Reviews, vol. 3, pp. 1-42, Dec. 2020.

T. Ohzuku, A. Ueda, and N. Yamamoto, “Zero-Strain Insertion Material of Li (Li1/3Ti5/3) O4 for Rechargeable Lithium Cells,” Journal of the Electrochemical Society, vol. 142, pp. 1431-1435, May. 1995.

T. D. H. Nguyen, H. D. Pham, S-Y. Lin et al., “Featured Properties of Li+-Based Battery Anode Li4Ti5O12,” RSC Advances, vol. 10, pp. 14071-14079, Apr. 2020.

T. Nemeth, P. Schroer, M. Kuipers et al., “Lithium Titanate Oxide Battery Cells for High-Power Automotive Applications: Electrothermal Properties, Aging Behavior and Cost Considerations,” Journal of Energy Storage, vol. 31, p. 101656, Oct. 2020.

L. Zhang, X. Zhang, Q. Zhang et al., “Lithium Lanthanum Titanate Perovskite as an Anode for Lithium-Ion Batteries,” Nature Communications, vol. 11, p. 8, Jul. 2020. [65] Y. B. He, B. Li, M. Liu et al., “Gassing in Li4Ti5O12-Based Batteries and Its Remedy,” Scientific Reports, vol. 2, p. 913,

Dec. 2012.

F. Wang, L. Wu, C. Ma et al., “Excess lithium Storage and Charge Compensation in Nanoscale Li4+xTi5O12,” Nanotechnology, vol. 24, no. 24, p. 9, Sep. 2013.

J. Lu, C. Chen, Z. Ma et al., ‘The Role of Nanotechnology in the Development of Battery Materials for Electric Vehicles,” Nature Nanotechnology, vol. 11, pp. 1031-1038, Dec. 2016.

H-J. Hong, G. Ban, S-M. Lee et al., “Synthesis of 3D-structured Li 4Ti5O12 from Titanium (IV) Oxysulfate (TiOSO4) Solution as a Highly Sustainable Anode Material for Lithium-Ion Batteries,” Journal of Alloys & Compounds, vol. 844, p. 156203, Dec. 2020.

L. A. Ellingsen, C. R. Hung, G. Majeau-Bettez et al., “Nanotechnology for Environmentally Sustainable Electromobility,” Nature Nanotechnology, vol. 11 no. 12, pp. 1039-1051, Dec. 2016.

X. Li, P. Huanga, W. Yang et al., “In-situ Carbon Coating to Enhance the Rate Capability of the Li4Ti5O12 Anode Material and Suppress the Electrolyte Reduction Decomposition on the Electrode,” Electrochimica Acta, vol. 190, pp. 69-75, Feb. 2016.

J. K. Yoon, S. Nam, H. C. Shim et al., “Highly-Stable Li 4Ti5O12 Anodes Obtained by Atomic-Layer-Deposited Al2O3,” Materials, vol. 11, p. 10, May. 2018.

N. Delaporte, P. Chevallier, and S. Rochon, “A Low-Cost and Li-Rich Organic Coating on a Li4Ti5O12 Anode Material Enabling Li-Ion Battery Cycling at Subzero Temperatures,” Material Advances, vol. 1, pp. 854-872, Jun. 2020.

M. S. Milien, J. Hoffmann, M. Payne, “Effect of Electrolyte Additives on Cycling Performance and Gas Evolution,” Journal Electrochemical Society, vol. 165, no. 16, pp. A3925-A3931, Dec. 2018.

M. R. Palacin, “Recent Advances in Rechargeable Battery Materials: A Chemist’s Perspective,” Chemical Society Reviews, vol. 38, pp. 2565-2575, Jun. 2009.

R. Borah, F. R. Hughson, J. Johnston et al., “On Battery Materials and Methods,” Materials Today Advances, vol. 6, p. 22, Jun. 2020.

Y. Wu, X. Huang, L. Huang et al., “Strategies for Rational Design of High-power Lithium-Ion Batteries,” Energy & Environmental Materials, vol. 4, pp. 19-45, May 2021.

S-H. Yu, S. H. Lee, D. J. Lee, et al. “Conversion ReactionBased Oxide Nanomaterials for Lithium-Ion Battery Anodes,” Small, vol. 12, pp. 2146-2172, Dec. 2016.

S-H. Yu, X. Feng, N. Zhang et al., “Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries,” Accounts of Chemical Research, vol. 51, no. 2, pp. 273-281, Jan. 2018.

Q. Cui, Y. Zhong, L. Pan et al., “Recent Advances in Designing High-Capacity Anode Nanomaterials for Li-Ion Batteries and Their Atomic-Scale Storage Mechanism Studies,” Advanced Science, vol. 5, p. 22, Apr. 2018.

T. W. Kwon, J. W. Choi, and A. Coskun, “The Emerging Era of Supra-Molecular Polymeric Binders in Silicon Anodes,” Chemical Society Reviews, vol. 47, pp. 2145-2164, Feb. 2018.

N. Yuca, O. S. Taskin, and E. Arici, “An Overview of Efforts to Enhance the Si Electrode Stability for Lithium-Ion Batteries,” Energy Storage, vol. 2, no. 94, pp, 15, Oct. 2020.

Y-M. Zhao, F-S. Yue, S-C. Li et al., “Advances of Polymer Binders for Silicon-Based Anodes in High Energy LithiumIon Batteries,” InfoMat, vol. 2, pp. 460-501, Mar. 2021.

S. Li, Z-Gu. Wu, Y-M. Liu et al., “A Compared Investigation of Different Biogum Polymer Binders for Silicon Anode of Lithium-Ion Batteries,” Ionics, vol. 27, pp.1829-1836, Mar. 2021.

R. Schmuch, Z. G. Wu, Y-M. Liu et al., “Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries,” Nature Energy, vol. 3, pp. 267-278, Apr. 2018.

J. Asenbaue, T. Eisenmann, M. Kuenzel et al., “The Success Story of Graphite as a Lithium-Ion Anode

Material-Fundamentals, Remaining Challenges, and Recent Developments Including Silicon (Oxide) Composites,” Sustainable Energy Fuels, vol. 4, pp. 5387-5416, May 2020.

T. Chen, J. Wu, Q. Zhang et al., “Recent Advancement of Siox Based Anodes for Lithium-Ion Batteries,” Journal of Power Sources, vol. 363, pp. 126-144, Sep. 2017.

Z. Liu, Q. Yu, and Y. Zhao, “Silicon Oxides: A Promising Family of Anode Materials for Lithium-Ion Batteries,” Chemical Society Reviews, vol. 48, pp. 285-309, Dec. 2019.

J. Frazelle, “Battery Day,” ACM Queue, vol. 8, no. 5, pp. 5-25, Oct. 2020.

E. Fox. (2020, Sep. 28). Tesla Silicon Anode for 4680 Battery Cell: What’s the Secret? [Online]. Available: https://www.


COBRA. (2021, Jul. 10). Tesla vs COBRA: A look at Tesla’s Battery Day. [Online]. Available: https//

MINING.COM. (2021, Mar. 30). NEO’s Silicon Anodes Achieve Long-Term Cycling. [Online]. Available:

N. Willing. (2021, Jan. 29). Battery Makers Expand Silicon Anode Production. [Online]. Available:

Y. Che, Y. Luo, H. Zhang, “The Challenge of Lithium MetalAnodes for Practical Applications,” Small Methods, vol. 3,no. 7, p. 23, Apr. 2019.

R. Wang, W. Cui, F. Cu et al. “Lithium metal Anodes Present and Future,” Journal of Energy Chemistry, vol. 48, pp. 145-159, Sep. 2021.

D. Lin, Y. Liu, and Y. Cui, “Reviving the Lithium Metal Anode for High-Energy Batteries,” Nature Nanotechnology, vol. 2, pp.194-206, Mar. 2017.

Y. Han, B. Liu, Z. Xiao et al., “Interface Issues of Lithium Metal Anode for High-Energy Batteries: Challenges, Strategies, and Perspectives,” InfoMat, vol. 3, pp. 155-174,Jan. 2021.

G. Zubi, R. Dufo-Lópeza, M. Carvalho et al., “The LithiumIon Battery: State of the Art and Future Perspectives,” Renewable & Sustainable Energy Reviews, vol. 89, pp. 292- 308, Jun. 2018.

K. Shang. (2021, Jul. 20). Lithium-ion Batteries: LFP Cathode Materials Market Share Forecast to Increase in 2021. [Online]. Available:

J. Li, M. Weng, Y. Qiu et al., “Structural Origin of The High-Voltage Instability of Lithium Cobalt Oxide,” Nature Nanotechnology, vol. 16, pp. 599-605, Feb. 2021.

J-N. Zhang, Q. Li, C. Ouyang et al., “Trace Doping of Multiple Elements Enables Stable Battery Cycling of Licoo2 at 4.6V,” Nature Energy, vol. 4, pp. 594-603, Jun. 2019.

K. Wang, J. Wang, Y. Xian et al., “Recent Advance and Historical Developments of High Voltage Lithium Cobalt Oxide Materials for Rechargeable Lithium-Ion Batteries,” Journal Power Sources, vol. 460, p. 228062, Jun. 2020.

Y. Lyu, X. Wu, K. Wang et al., “An Overview of the Advances of LicoO2 Cathodes for Lithium-Ion Batteries,” Advanced Energy Materials, vol. 11, no. 2, p. 2000982, Jun. 2020.

S. Muto, Y. Sasano, K. Tatsumi et al., “Capacity-Fading Mechanisms of LiNiO2-Based Li-ion Batteries. II. Diagnostic Analysis by Electron Microscopy and Spectroscopy,” Journal of Electrochemical Society, vol. 156, pp. A371-A377, Mar. 2009.

J. Xu, F. Lin, M. M. Doeff et al., “A Review of Ni-based Layered Oxides for Rechargeable Li-ion Batteries,” Journal of Materials Chemistry A, vol. 5, pp. 874-901, Nov. 2017.

C. H. Chen, J. Liua, M. E. Stoll et al., “Aluminium-Doped Lithium Nickel Cobalt Electrodes for High-Power LithiumIon Batteries,” Journal of Power Sources, vol. 125, no. 2, pp. 278-285, Apr. 2004.

A. Purwanto, C. S. Yudha, U. Ubaidillah et al., “NCA Cathode Material: Synthesis Methods and Performance Enhancement Efforts,” Materials Research Express, vol. 5, no. 2, p. 122001, Sep. 2018.

C. M. Julien and A. Mauger, “NCA, NCM 811 and the Route to Ni-Richer Lithium-Ion Batteries,” Energies, vol. 13, no. 23, p. 46, Dec. 2020.

K. Zhou, Q. Xiea, B. Li et al., “An In-Depth Understanding of The Effect ofAluminum Doping in High-Nickel Cathodes for Lithium-Ion Batteries,” Energy Storage Materials, vol. 34, pp. 229-240, Jan. 2021.

NISSAN. (2021, Jul. 10). Accelerating Toward Carbon Neutrality. [Online]. Available: https://www. on ev.thml

X. Li, Y. Yu, and C. Wang, “Suppression of Jahn-Teller Distortion of Spinel Limn2O4 Cathode,” Journal of Alloys & Compounds, vol. 479, pp. 310-313, Jun. 2009.

J. P. Pender, “Electrode Degradation in Lithium-Ion Batteries,” ACS Nano, vol. 14, pp. 1243-1295, Jan. 2020.

C. Zuo, Z. Hu, R. Qi et al., “Double the Capacity of Manganese Spinel for Lithium-Ion Storage by Suppression of Cooperative Jahn-Teller Distortion,” Advanced Energy Materials, vol. 10, no. 34, p. 10, Sep. 2020.

A-H. Marincas, F. Goge, S. A. Dorneanu et al., “Review on synthesis methods to obtain LiMn2O4-Based Cathode Materials for Li-ion Batteries,” Journal Solid State Electrochemistry, vol. 24, pp. 473-497, Jan. 2020.

S. Lui, B. Wang, X. Zhang et al., “Reviving the LithiumManganese -Based Layered Oxide Cathodes for Lithium-Ion Batteries,” Matter, vol. 4, no. 5, pp. 1511-1527, May 2021.

L. Yang, K. Yang, and J. Zhang, “Harnessing Surface Structure to Enable High-Performance Cathode Materials for Lithium-Ion Batteries,” Chemical Society Reviews, vol. 49, pp. 4667-4680, Jan. 2020.

G. Xu, C. Zhang, C. Cui et al., “Strategies for Improving the Cyclability and Thermo-Stability of LiMn2O4-Based Batteries at Elevated Temperatures,” Journal MaterialsChemistry A, vol. 3, pp. 4092- 4123, Feb. 2015.

W. Liu, J. Chen, S. Ji et al., “Enhancing the Electrochemical Performance of the LiMn

O4 Hollow Microsphere Cathode with LiNi 0.5Mn1.5O4 Coated Layer,” Chemistry Europe

Journal, vol. 20, no. 3, pp. 824-830, Jan. 2014.

L. Wen, X. Wang, G. Q. Liu et al., “Novel Surface Coating Strategies for Better Battery Materials,” Surface Innovations, vol. 6, no. 1-2, pp.13-18, Mar. 2018.

P. Ye, H. Dong, Y. Xu et al., “Nico2O4 Surface Coating Li [Ni0.03Mn1.97] O4 Micro-/Nano-Spheres as Cathode Material for High-Performance Lithium-Ion Battery,” Applied Surface Science, vol. 428, pp. 469-477, Sep. 2018.

T. Kozawa, T. Harata, and M. Naito, “Fabrication of an LiMn 2O4@LiMnPO4 Composite Cathode for Improved Cycling Performance at High Temperatures,” Journal of Asian Ceramic Societies, vol. 8, no. 2, pp. 309-317, Mar. 2020.

V. Selvamani, N. Phattharasupakun, J. Wutthipron et al., “High-Performance Spinel LiMn2O4@Carbon Core-Shell Cathode Materials for Li-Ion Batteries,” Sustainable Energy & Fuels, vol. 3, pp. 1988-1994, May. 2019.

J. Lu, B. Song, H. Xia et al., “High Energy Spinel-Structured Cathode Stabilized by Layered Materials for Advanced Lithium-Ion Batteries,” Journal Power Sources, vol. 271, pp. 604-613, Dec. 2014.

J. Wu, Z. Cui, J. Wu et al., “Suppression of Voltage-Decay in Li 2MnO3 Cathode via Reconstruction of Layered-Spinel Co-exist Phases,” Journal Materials Chemistry A, vol. 8, pp. 18687-18697, Aug. 2020.

S. Liu and H. Yu, “Toward Functional Units Constructing Mn-Based Oxide Cathodes for Rechargeable Batteries,” Science Bulletin, vol. 66, no. 13, pp. 1260-1262, Jul. 2021.

X. Zhu, F. Meng, Q. Zhang et al., “LiMnO2 Cathode Stabilized by Interfacial Orbital Ordering for Sustainable Lithium-Ion Batteries,” Nature Sustainability, vol. 4, pp. 392-401, Dec. 2021.

S. Kaewma, N. Wiriya, P. Chantrasuwan, “Multiscale Investigation Elucidating the Structural Complexities and Electrochemical Properties of Layered-Layered Composite Cathode Materials Synthesized at Low Temperatures,” Physical Chemistry Chemical Physics, vol. 22, no. 10, pp. 5439-5448, Jan. 2020.

D. Andre, S. J. Kim, P. Lump et al., “Future generations of Cathode Materials: An Automotive Industry Perspective,” Journal Material Chemistry A, vol. 3, pp. 6709-6732, Feb. 2015.

Y. Chen, S. Song, X. Zhang et al., “The Challenges, Solutions, and Development of High-Energy Ni-rich NCM/NCA Lib Cathode Materials,” Journal of Physics: Conference Series, vol. 1347, p. 9, Jun. 2019.

J. L. Choi, “Recent Progress and Perspective of Advanced High-Energy Co-Less Ni-Rich Cathodes for Li-Ion Batteries: Yesterday, Today and Tomorrow,” Advanced Energy Materials, vol. 10, p. 31, Sep. 2020.

N. Mohamed and N. K. Allam, “Recent Advances in the Design of Cathode Materials for Li-Ion Batteries,” RSC Advances, vol. 10, pp. 2162-21685, Jun. 2020.

X. Shen, “Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect,” Energy Material Advances, vol. 2021, p. 15, Jun. 2021.

S. W. D. Gourley, T. Or, and Z. Chen, “Breaking Free from Cobalt Reliance in Lithium-Ion Batteries,” iScience, vol. 23, no. 9, p. 16, Aug. 2020.

K. B-wook. (2021, Jul. 10). SK Makes World’s 1st NCM Battery with 90% Nickel. [Online]. Available: https//www.

H-J. Kim, TNV. Krishna, K. Zeb et al., “A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques,” Electronics, vol. 9, p. 45, Jul. 2020.

S. Duhnen, J. Betz, M. Kolek et al., “Towards Green Battery Cells: Perspective on Materials and Technologies,” Small Methods, vol. 4, pp. 1-38, Apr. 2020.

D. Matthews, “Global Value Chains: Cobalt in Lithium-ion Batteries for Electric Vehicles,” U.S. International Trade Commission, Washington DC, USA, Rep. ID-067, May 18,

M. Azevedo, N. Campagnol, and T. Hagenbruch. (2018, Jun 22). Lithium and Cobalt-A Tale of Two Commodities. [Online]. Available: https//

I. Belharouak, J. Nanda, E. Self et al., “Operation, Manufacturing and Supply Chain of Lithium-Ion Batteries for Electric Vehicles,” Oak Ridge National Laboratory, Oak Ridge, USA, Rep. ORNL/TM-2020/172955, Jan. 1, 1996.

J. Baars, T. Domenech, R. Bleischwitz et al., “Circular Economy Strategies for Electric Vehicle Batteries to Reduce Reliance on Raw Materials,” Nature Sustainability, vol. 4, pp. 71-79, Sep. 2021.

UNCTAD, “Commodities at a Glance: Special Issue on Strategic Battery Raw Materials,” UNCTAD, Geneva, CH, Rep. No. 13, Jun. 13, 2020.

X. Yu and A. Manthiram, “Sustainable Battery Materials for Next-Generation Electrical Energy Storage,” Advanced Energy Sustainability Research, vol. 2, pp. 2-12, Jun. 2021.

S-T. Myung, F. Maglia, and K-J. Park “Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries:Achievements and Perspectives,” ACS Energy Lett., vol. 2, no. 1, pp. 196-223, Dec. 2017.

T. Li, X-Z. Yuan, L. Zhang et al., “Degradation Mechanisms and Mitigation Strategies of Nickel-rich NMC-Based Lithium-Ion Batteries,” Electrochemical Energy Reviews, vol. 3, pp. 43-80, Oct. 2020.

P. Teichert, G. G. Eshetu, H. Jahnke et al., “Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries,” Batteries, vol. 6, no. 8, Jan. 2020.

M. Armand, P. Axmannb, D. Bresser et al., “LithiumIon Batteries-Current State of the Art and Anticipated Developments,” Journal of Power Sources, vol. 479, p. 26, Dec. 2020.

L. Liu, M. Lia, L. Chu et al., “Layered Ternary Metal Oxides: Performance Degradation Mechanisms as Cathodes, and Design Strategies for High-Performance Batteries,” Progress in Mat. Science, vol. 111, p. 85, Jun. 2020.

L. Song, J. Du, Z. Xiao et al., “Research Progress on the Surface of High-Nickel-Cobalt-Manganese Ternary Cathode Materials: A Mini Review,” Frontiers in Chemistry, vol. 8, p. 8, Aug. 2020.

A. L. Lipson, J. L. Durham, M. LeResche et al., “Improving the Thermal Stability of NMC622 Li-ion Battery Cathodes Through Doping During Coprecipitation,” ACS Applied Material Interfaces, vol. 12, pp.18512-18518, Apr. 2020.

X. Chen, F. Ma, Y. Li et al., “Nitrogen-Doped Carbon Coated LiNi 0.6Co0.2Mn0.2O2 Cathode with Enhanced Electrochemical Performance for Li-Ion Batteries,” Electrochimica Acta, vol. 284, pp. 526-533, Sep. 2018.

L. Zhu, T. F. Yan, D. Jia et al., “LiFePO4-Coated LiNi 0.5Co0.2Mn0.3O2 Cathode Materials with Improved High Voltage Electrochemical Performance and Enhanced Safety for Lithium-Ion Pouch Cells,” Journal Electrochemical Society, vol. 166, pp. A5437-A5444, Jan. 2019.

Y. B. Cao, X. Qi, K. H. Hu et al., “Conductive Polymers Encapsulation to Enhance Electrochemical Performance of Ni-rich Cathode Materials for Li-Ion Batteries,” ACS Applied Materials & Interfaces, vol. 10, pp. 18270-18280, May 2018.

G. L. Xu, Q. Liu, K. K. S. Lau et al., “Building Ultraconformal Protective Layers on Both Secondary and Primary Particles of Layered Lithium Transition Metal Oxide Cathodes,” Nature Energy, vol 4, pp. 484-494, May 2019.

J. Sagoff. (2019, May 14). New Argonne Coating Could Have Big Implications for Lithium Batteries. [Online]. Available: new-argonne-coating-couldhave-big-implications-for-lithium-batteries

T. Wu, X. Liu, X. Zhang et al., “Full Concentration GradientTailored Li-rich Layered Oxides for High-Energy LithiumIon Batteries,” Advanced Materials, vol. 33, no. 2, p. 10, Nov. 2020.

S. Maeng, Y. Chungb, S. Min et al., “Enhanced Mechanical Strength and Electrochemical Performance of Core-Shell Structured High-Nickel Cathode Material,” Journal of Power Sources, vol. 448, no. 1, p. 227395, Feb. 2020.

P. Yan, J. Zheng, J. Liu et al., “Tailoring Grain Boundary Structures and Chemistry of Ni-rich Layered Cathodes for Enhanced Cycle Stability of Lithium-Ion Batteries,” Natural Energy, vol. 3, pp. 600-605, Jul. 2018.

C. Wang, R. Yua, S. Hwang et al., “Single Crystal Cathodes Enabling High-Performance All-Solid-State Lithium-Ion Batteries,” Energy Storage Materials, vol. 30, pp. 98-103, Sep. 2020.

L. Zheng, J. C. Bennett, and M. N. Obrovac, “All-Dry Synthesis of Single Crystal NMC Cathode Materials for Li-Ion Batteries,” Journal Electrochemical Society, vol. 167, p. 130536, Oct. 2020.

Q. Wu, S. Mao, Z. Wang et al., “Improving LiNixCoyMn1-x-y Cathode Electrolyte Interface Under High Voltage in Lithium-Ion Batteries,” Nano Select, vol. 1, pp. 111-134, Jun. 2020.

Z. Ahsan, B. Ding, Z. Cai et al., “Recent Progress in Capacity Enhancement of LiFePO

Cathode for Li-Ion Batteries,” Journal Electrochem, Energy Conservation & Storage, vol. 18, p. 15, Feb. 2021.

R. Zhao, J. Liu, and F. Ma, “Cathode Chemistries and Electrode Parameters Affecting the Fast Charging Performance of Li-Ion Batteries,” Journal Electrochem, Energy Conservation & Storage, vol. 17, p. 13, May 2020.

J. Hu, W. Huang, L. Yang et al., “Structure and Performance of The LiFePO 4 Cathode Material: From the Bulk to the Surface,” Nanoscale, vol. 12, pp. 15036-15044, Jun. 2020.

Y-M Xin, H-Y. Xu, J-H Ruan et al., “A Review on Application of LiFePO4 Based Composites as Electrode Materials for Lithium-Ion Batteries,” International Journal of Electrochemical Science, vol. 16, p. 18, Jun. 2021.

Wall Street Journal. (2021, Jul. 10). Low-cost EV Battery Wins Fans in China. [Online]. Available: https//

E. Els. (2011, Mar. 11). Cobalt, Nickel Free Electric Car Batteries are a Runaway Success. [Online]. Available:

ROSKILL. (2020, Jun. 25). Batteries: The True Drivers Behind LFP Demand-New Safety Standards, Costs, IP Rights, ESG & Simplified Battery Pack Designs. [Online]. Available:



X-G. Yang, T. Liu, and C-Y Wang, “Thermally Modulated Lithium Iron Phosphate Batteries for Mass-Market Electric Vehicles,” Nature Energy, vol. 6, pp.176-185, Jan. 2021.

N. Tolganbek, Y. Yerkinbekova, S. Kalybekkyzy et al., “Current State of High Voltage Olivine Structured LiMPO4 Cathode Materials for Energy Storage Applications: A Review,” Journal Alloys & Compounds, vol. 882, p. 16, Nov. 2021.

J. Ma, Y. Li, N. S. Grundish et al., “The 2021 Battery Technology Roadmap,” Journal of Physics D: Applied Physics, vol. 54, p. 44, Sep. 2021.

A. E. Kharbachi, O. Zavorotynska, M. Latroche et al., “Exploits, Advances, and Challenges Benefiting Beyond Li-Ion Battery Technologies,” Journal Alloys & Compounds,

vol. 817, p. 26, Sep. 2020.

D. Chao, W. Zhou, F. Xie et al., “Roadmap for Advanced Aqueous Batteries: From Design of Materials to Applications,” Science Advances, vol. 6, no. 21, pp. 1-19, May 2020.

J. Janek and W. G. Zeier, “A solid Future for Battery Development,” Nature Energy, vol. 1, p. 16141, Sep. 2016.

S. Randau, D. A. Weber, O. Kotz et al., “Benchmarking the Performance of All-Solid-State Lithium Batteries,” Nature Energy, vol. 5, pp. 259-270, Mar. 2020.

Z. Wang, J, Liu, M, Wang et al., “Toward Safer Solid-State Lithium Metal Batteries,” Nanoscale Advances, vol. 5, p. 9, Apr. 2020.

S. Ferrari, M. Falco, and A. B. Munoz-Garcia, “Solid-State Post Li Metal Ion Batteries: A Sustainable Forthcoming Reality,” Advanced Energy Materials, vol. 10, p. 30, Jun. 2021.

Z. Zhang, Y. Shao, B. Lotsch et al., “New Horizons for Inorganic Solid State Ion Conductors,” Energy & Environmental Science, vol. 11, pp. 1945-1976, Jun. 2018.

G. Yang, C. Abraham, Y. Ma et al., “Advances in Materials Design for All-Solid-State Batteries: From Bulk to Thin Films,” Applied Sciences, vol. 10, 4727, p. 50, Jul. 2020.

S. Ball, J. Clark, and J. Cookson, “Battery Materials Technology Trends and Market Drivers for Automotive Applications,” Johnson Matthey Technology Review, vol. 64, no. 3, pp. 287-297, Jul. 2020.

D. Karabelli, K. P. Birke, and M. Weber, “A Performance and Cost Overview of Selected Solid-State Electrolytes: Race between Polymer Electrolytes and Inorganic Sulphides,” Batteries, vol. 7, no. 18, p. 13, Mar. 2021.

T. Zhang, W. He, W. Zhang et al., “Designing Composite Solid-State Electrolytes for High Performance Lithium Ion or Lithium Metal Batteries,” Chemical Science, vol. 11, pp. 8686-8707, Jul. 2020.

S. Li, S-Q Zhang, L. Shen et al., “Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries,” Advanced Science, vol. 7, p. 22, Jan. 2020.

Z. Ding, J. Li, J. Li et al., “Review-Interfaces: Key Issue to be Solved for All Solid-State Battery Technologies,” Journal Electrochemical Society, vol. 167, p. 19, Jun. 2020.

S. Lou, F. Zhang, C. Fu et al., “Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium and Beyond,” Advanced Materials, vol. 33, no. 6, p. 29, Jul. 2020.

C. Singer, J. Schnell, and G. Reinhart, “Scalable processing Routes for the Production of All-Solid-State BatteriesModeling Interdependencies of Product and Process,” Energy Technologies, vol. 9, p. 14, Oct. 2021.

K. J. Huang, G. Reder, and E. A. Olivetti, “Manufacturing Scalability Implications of Materials Choice in Inorganic Solid-State Batteries,” Joule, vol. 5, no. 3, pp. 564-580, Mar.

E. Sugiura. (2021, May 28). Can Japan and Toyota win the Solid-State Battery Race? [Online]. Available: https://asia. solid state

K. Chayabuka, G. Moulder, D. L. Danilov et al., “From Li-Ion Batteries Toward Na-Ion Chemistries: Challenges and Opportunities,” Advanced Energy Materials, vol. 10, p. 11, Aug. 2020.

K. M. Abraham, “How Comparable are Sodium-Ion Batteries to Lithium-Ion Counterparts?,” ACS Energy Letters, vol. 5, pp. 3544-3547, May 2020.

M. Mirzaelan, Q. Abbas, M. R. C. Hunt et al., “Na-Ion Batteries,” in Encyclopedia of Smart Materials, A. G. Olabi, Ed. Amsterdam, NLD: Elsevier, 2021, p. 14.

M. Arnaiz, J. L. Gomez-Camer, N. E. Drewett et al., “Exploring Na-ion Technological Advances: Pathways from Energy to Power,” Materials Today Proceedings, vol. 39, pp. 1118-1131, Apr. 2021.

H. Zhao, N. Deng, J. Yan et al., “A Review on Anode for lithium-Sulphur Batteries: Progress and Prospects,” Chemical Engineering Journal, vol. 347, pp. 343-365, Sep. 2018.

M. Zhao, B-Q. Li, X-Q. Zhang et al., “A Perspective toward Practical Lithium-Sulphur Batteries,” ACS Central Science, vol. 6, p. 1095-1104, Jun. 2020.

N. R. Levy and Y. Ein-Eli, “Aluminium-Ion Battery Technology: A Rising Star or a Devastating Fall,” Journal Solid State Electrochemistry,” vol. 24, pp. 2067-2071, Apr. 2020.

S. Hosseini, S. M. Soltani, and Y. Y. Li, “Current Status and Technical Challenges of Electrolytes in Zinc-Air Batteries: An in-Depth Review,” Chemical Engineering Journal, vol. 408, p. 127241, Mar. 2021.

B. Esser, F. Dolhem, M. Becuwe et al., “A Perspective on Organic Electrode Materials and Technologies for Next Generation Batteries,” Journal Power Sources, vol. 482, p. 24, Jan. 2021.

G. Karkera, M. A. Reddy, and M. Fichner, “Recent Developments and Future Perspectives of Anionic Batteries,” Journal of Power Sources, vol. 481, no. 22, p. 17, Jan. 2021.

M. M. Rahman, I. Sultana, Y. Fan et al., “Strategies, Design and Synthesis of Advanced Nanostructured Electrodes for Rechargeable Batteries,” Materials Chemistry Frontiers, vol. 16, p. 35, Jun. 2021.

D. E. Demirocak, S. S. Srinivasan, and E. K. Stefanakos, “A Review on Nanocomposite Materials for Rechargeable Li-ion Batteries,” Applied Sciences, vol. 7, no. 7, p. 731, Jul. 2017.

J. E. Knoop and S. Ahn, “Recent Advances in Nanomaterials for High-Performance Li-S Batteries,” Journal Energy Chemistry, vol. 47, pp. 86-106, Aug. 2020.

J. B. Dunn, L. Gaines, J. C. Kelly et al., “The Significance of Li-Ion Batteries in Electric Vehicle Life-Cycle Energy and Emissions and Recycling’s Role in its Reduction,” Energy & Environmental Science, vol. 8, pp. 158-168, Nov. 2015.

G. Harper, R. Sommerville, E. Kendrick et al., “Recycling Lithium-Ion Batteries from Electric Vehicles,” Nature, vol. 575, pp. 75-86, Nov. 2019.

L. C. Casals, B. A. Garcia, and C. Canal, “Second Life Batteries Lifespan: Rest of Useful Life and Environmental Analysis,” Journal Environmental Management, vol. 232, pp. 354-363, Nov. 2019.

J. Bacher, E. Pohjalainen, E. Yli-Rantala et al., “Environmental Aspects Related to the use of Critical Raw Materials in Priority Sectors and Value Chains,” European Environment Agency, Copenhagen, DNK, Re. ETC/WMGE 2020/5, Dec.15, 2020.

H. E. Melin. (2029, Mar. 29). State-of-the-Art in Reuse and Recycling of Lithium-Ion Batteries. [Online]. Available:

A. Beaudet, F. Larouche, K. Amouz et al., “Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials,” Sustainability, vol. 12, no. 14, p. 12, Jul. 2020.

X. B. Cheng, H. Liu, H. Yuan et al., “A Perspective on Sustainable Energy Materials for Lithium Batteries,” SusMat. vol. 1, pp. 38-50, Mar. 2021.

X. Yu and A. Manthiram, “Sustainable Battery Materials for Next-Generation Electrical Energy Storage,” Advanced Energy Sustainability Research, vol. 2, no. 5, p. 12, Jan. 2021.

S. Doose, J. K. Mayer, and P. Michalowski, “Challenges in Ecofriendly Battery Recycling and Closed Materials Cycles: A Perspective on Future Lithium Battery Generations,” Metals, vol. 11, p. 17, Feb. 2021.

Y. Liu, R. Zhang, J. Wang et al., “Current and Future lithiumIon Battery Manufacturing,” iScience, vol. 24, p. 17, Apr. 2021.

P. Cooke, “Gigafactory Logistics in Space and Time: Tesla’s Fourth Gigafactory and Its Rivals,” Sustainability, vol. 12, p. 16, Mar. 2020.

Greenpeace. (2021, Jul. 10). Greenpeace Report Troubleshoots China’s Electric Vehicles Boom, Highlights Critical Supply Risks for Lithium-Ion Batteries. [Online]. Available: https://www.greenpeace


P. Bhandubanyong and J. T. H. Pearce, “Materials on Wheels: Moving to Lighter Auto-Bodies,” International Scientific Journal of Engineering and Technology, vol. 2, no.1, pp. 27-36, Jun. 2018.

P. Bhandubanyong and J. T. H. Pearce, “Going Electric: Some Materials Aspects for the Thai Automotive Industry,” Materials Science, vol. 36, pp. 4-6, Jan. 2019.

A&L. (2020, Nov. 23). Aluminium for Battery Containers in Electric Cars. [Online]. Available: https://www.publiteconline. it/ael/aluminium-for-battery-containers-in-electric-cars-3/

F. Lambert. (2021, Jan. 19). First Look at Tesla’s New Structural Battery Pack that will Power its Future Vehicles. [Online]. Available:

M. Schröder, “Electric Vehicle and Electric Vehicle Component Production in Thailand,” ERIA, Jakarta: IDN, Re. FY2021 no. 03, May 7, 2021.

Kasikorn. (2029, Jan. 30). Thailand is Poised to Produce over 430,000 units of EV Batteries in 5 Years, Becoming 4th Largest Production Base in Asia. [Online]. Available: https://www.kasikornresearch


Thailand Board of Investment. (2021, Jul. 20). Thailand Car Makers Ramp Up Electric Vehicle Production Capacity in Thailand, Investment Board Says. [Online]. Available: https://www.boi//


Batteries Directive. (2021, Jul. 10). European Parliamentary Research Service. [Online]. Available: https://www.europarl.Eu/RegData/etudes/BRIE/2020/654184/EPRBRI(2020)654184_EN.pdf

TGGS. (2021, Jul. 10). NSTDA in collaboration with KKU KMUTT KMUTNB and EVAT to find Thailand Energy Storage Technology Alliance (TESTA). [Online]. Available: https;//


EVAT. (2021, Jul. 10). Thailand’s Automotive Industry and Current EV Status. [Online]. Available:[PPT]%20Thailand’s%20Automotive%20Industry%20and%20Current%20EV%20Statu