Confidence Interval Estimation of Elderly Health Behaviors with the Nakagami distribution

Authors

  • Nitaya Buntao Rajabhat Maha Sarakham University
  • Rada Somkhuean Rajamangala University of Technology Lanna Chiang Mai

Keywords:

Interval estimation, Nakagami distribution, lifetime data, health behaviors of the elderly

Abstract

The objective of this research aims to estimation of confidence intervals of health behaviors of the elderly with Nakagami distribution using the Maximum Likelihood (ML), the Method of Moments Estimator (ME) and the Bayesian Method, by comparing their coverage probability and average interval widths. The sample size are 10 25 50 100 500 and 1000, providing the confidence level of 95% and 99%. This research was studied by Monte Carlo simulations using replicated 10,000 times. When the shape parameter is equal to 0.5, 1, 1.5, 2, 2.5, 5, 10, and 30, and the scale parameter is equal to 1. We consider the case of the high coverage probability and the average width of the narrowest. The results showed that Comparison of the performance of parameter confidence estimates for the Nakagami distribution. It compares the probability of coverage and the mean width of the confidence interval. Of the three methods of estimation, it was found that most of the Bayesian methods The coverage probability is as close to 95% and 99% confidence levels as possible. The mean width of the narrowest range when the shape parameter is 0.5, 1, 1.5, 2, 2.5, 5, 10 and 30, the Bayesian method gives the mean width of the narrowest range when the shape parameter is 0.5. is the maximum and the method of the moment It gives the probability of coverage close to the confidence coefficient as the sample size increases.

Author Biographies

Nitaya Buntao, Rajabhat Maha Sarakham University

Department of Applied Statistics

Rada Somkhuean, Rajamangala University of Technology Lanna Chiang Mai

Department of Mathematics, Faculty of Science and Agricultural Technology

References

ประชุม สุวัตถี. (2553). ทฤษฎีการอนุมานเชิงสถิติ: โครงการส่งเสริมเอกสารวิชาการสถาบัน บัณฑิตพัฒนบริหารศาสตร์. กรุงเทพฯ: สำนักงานกิจการโรงพิมพ์ องค์การสงเคราะห์ทหาร ผ่านศึก.

กัลยา วานิชย์บัญชา. (2548). หลักสถิติ. พิมพ์ครั้งที่ 8: โรงพิมพ์จุฬาลงกรณ์มหาวิทยาลัย.

มานพ วราภักดิ์. (2548). ทฤษฎีความน่าจะเป็น. พิมพ์ครั้งที่ 1. กรุงเทพฯ: โรงพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.

วราฤทธิ์ พานิชกิจโกศลกุล. (2550). การเปรียบเทียบวิธีการประมาณความเชื่อมั่นของพารามิเตอร์ของการแจก แจงเลขชี้กำลัง เมื่อข้อมูลมีค่าผิดปกติ. วารสารวิจัยและพัฒนา มจธ. ปี30 ฉบับที่2 เดือน เมษายน - มิถุนายน หน้า 211-222.

Hall P. (1988). Theoretical comparison of bootstrap confidence intervals. Ann. Statist. 16, 927- 953.

A. K. Shanker, C. Cervantes, H. Loza-Tavera, and S. Avudainayagam, “Chromium toxicity in plants,” Environment International, vol. 31, no. 5, pp. 739–753, 2005.

P.-H. Tsui, C.-C. Huang, and S.-H. Wang, “Use of Nakagami distribution and logarithmic compression in ultrasonic tissue characterization,” Journal of Medical and Biological Engineering,vol. 26, no. 2, pp. 69–73, 2006.

D. T. Yang and J. Y. Lin, “Food availability, entitlement and the Chinese famine of 1959–61,” Economic Journal, vol. 110, no.460, pp. 136–158, 2000.

K. Kim and H. A. Latchman, “Statistical traffic modeling of MPEG frame size: experiments and analysis,” Journal of Systemics, Cybernetics and Informatics, vol. 7, no. 6, pp. 54–59,2009.

Nelson, W. (1982). Applied Life Data Analysis. New York: John Wiley & Sons, Inc.

Perry, J. N. (1962). Semiconductor Burn-in and Weibull Statistics, Semiconductor Reliability, Engineering Publishers, Elisabeth, 2, p. 80-90.

Jantakoon, N. and Sirisom, P. (2020). Performance Evaluation of Some Confidence Intervals for Estimating the Shape Parameter of the Two-Parameter Lomax Distribution, Applied Mathematics and Information Sciences, 14(4), p. 605-616.

Jantakoon, N. and Volodin, A. (2019). Interval estimation for the shape and scale parameters of the Birnbaum Saunders distribution. Lobachevskii Journal of Mathematics, 40(8), p. 164-1177.

R Development Core Team. (2021). R: a language and environment for statistical computing, R Foundation for Statistical Computing.

Downloads

Published

2022-12-30

How to Cite

Buntao, N., & Somkhuean, R. (2022). Confidence Interval Estimation of Elderly Health Behaviors with the Nakagami distribution. SciTech Research Journal, 5(2), 143–160. Retrieved from https://ph02.tci-thaijo.org/index.php/jstrmu/article/view/247688

Issue

Section

Research Articles