On the Diophantine equation (p-1)^x-p^y=z^2, when p is a prime

Authors

  • Suton Tadee Thepsatri Rajabhat University

Keywords:

Diophantine equation, Congruence, Quadratic residue

Abstract

In this paper, the non-negative integer solutions gif.latex?\left&space;(&space;x,y,z&space;\right&space;) of the Diophantine equation gif.latex?\left&space;(&space;p-1&space;\right&space;)^{x}-p^{y}=z^{2}, when gif.latex?p is a prime, are investigated. The results of this research, we showed that if gif.latex?p=2, then the non-negative integer solutions of the equation are gif.latex?\left&space;(&space;x,y,z&space;\right&space;)\in&space;\left&space;\{&space;\left&space;(&space;t,0,0&space;\right&space;)&space;\right&space;\}, when gif.latex?t is a non-negative integer. If gif.latex?p\equiv&space;1&space;\left&space;(&space;mod&space;4&space;\right&space;), then the equation has the unique non-negative integer solution, which is gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;0,0,0&space;\right&space;). If gif.latex?p=3, then all non-negative integer solutions gif.latex?\left&space;(&space;x,y,z&space;\right&space;) of the equation are  gif.latex?\left&space;(&space;0,0,0&space;\right&space;),\left&space;(&space;1,0,1&space;\right&space;) and gif.latex?\left&space;(&space;2,1,1&space;\right&space;). Moreover, if gif.latex?p\neq&space;3 and gif.latex?p\equiv&space;3&space;\left&space;(&space;mod&space;4&space;\right&space;), then the non-negative integer solutions of the equation are gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;0,0,0&space;\right&space;)and gif.latex?\left&space;(&space;x,y,z&space;\right&space;)=\left&space;(&space;1,0,\sqrt{p-2}&space;\right&space;) , when gif.latex?\sqrt{p-2} is an integer.

References

Buosi, M., Lemos, A., Porto, A.L.P. and Santiago, D.F.G. (2020). On the exponential Diophantine equation p^x-2^y=z^2 with p=k^2+2, a prime number. Southeast-Asian Journal of Sciences, 8(2), 103-109.

Burshtein, N. (2020). All the solutions of the Diophantine equations13^x-5^y=z^2, 19^x-5^y=z^2 in positive integers x,y,z. Annals of Pure and Applied Mathematics, 22(2), 93-96.

Burton, D.M. (2010). Elementary Number Theory. 7th ed., New York: McGraw-Hill.

Elshahed, A. and Kamarulhaili, H. (2020). On the Diophantine equation (4^n )^x-p^y=z^2. WSEAS Transactions on Mathematics, 19, 349-352.

Tadee, S. & Laomalaw, N. (2023). On the Diophantine equation (p+2)^x-p^y=z^2, where p is prime and p≡5(mod 24). International Journal of Mathematics and Computer Science, 18(2), 149-152.

Tadee, S. & Wannaphan, C. (2024). On the Diophantine equations (p+a)^x-p^y=z^2 and p^x-(p+a)^y=z^2. International Journal of Mathematics and Computer Science, 19(2), 459-465.

Thongnak, S., Chuayjan, W. & Kaewong, T. (2019). On the exponential Diophantine equation 2^x-3^y=z^2. Southeast-Asian Journal of Sciences, 7(1), 1-4.

Thongnak, S., Chuayjan, W. & Kaewong, T. (2021). The solution of the exponential Diophantine equation 7^x-5^y=z^2. Mathematical Journal, 66(703), 62-67.

Thongnak, S., Chuayjan, W. & Kaewong, T. (2023a). On the Diophantine equation 15^x-13^y=z^2. Annals of Pure and Applied Mathematics, 27(1), 23-26.

Thongnak, S., Kaewong, T. and Chuayjan, W. (2023b). On the Diophantine equation 55^x-53^y=z^2. Annals of Pure and Applied Mathematics, 27(1), 27-30.

Downloads

Published

2024-12-29

How to Cite

Tadee, S. (2024). On the Diophantine equation (p-1)^x-p^y=z^2, when p is a prime. SciTech Research Journal, 7(3), 17–24. retrieved from https://ph02.tci-thaijo.org/index.php/jstrmu/article/view/254098

Issue

Section

Research Articles