Preparation and flexural property of composite of carbon black reinforced epoxy resin

Main Article Content

Nattapon Kesangam
Warut Thammawichai

Abstract

Composite materials derived from epoxy resin that is thermoplastic are widely used in the 20th century due to their variety and flexibility in applications. It is commonly used in combination with carbon reinforcing to create a new kind of high-strength but lightweight material. The main objective of this research is to study and analyze the preparation of carbon black particles by a couple of ultrasonic technique, which is particle dispersion by ultrasonicate bath and ultrasonicate probe in 5 solutions:  DI water, acetone, ethanol, methanol, and methyl ethyl ketone. And to study the flexural property of composite reinforced carbon black by the universal testing machine.  As a result, it was found that the carbon black can be dispersed in 4 solutions: acetone, ethanol, methanol, and methyl ethyl ketone. However, it was precipitated after 60 minutes unless the carbon black was in the methanol solution. The particle in the methanol solution did not aggregate or precipitate to the bottom of the container after 5 days, which had an average particle size of 298.2 nm. In addition, composite materials reinforced 0.1, 0.2, 0.3, 0.4, and 0.5 wt.% of carbon black increase the flexural properties especially the stress at the yield point. The composite materials reinforced with 0.3 wt.% of carbon black increase the yield stress by 19% while Young’s modulus remains the same.

Article Details

How to Cite
[1]
N. Kesangam and W. . Thammawichai, “Preparation and flexural property of composite of carbon black reinforced epoxy resin”, NKRAFA J SCI TECH, vol. 18, no. 2, pp. 40–56, Dec. 2022.
Section
Research Articles

References

บุญรักษ์กาญจนวรวณิชย์. โพลิเมอร์คอมโพสิต. ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ

อาดีละห์ ศิริวัลลภ. (2558). วัสดุเชิงประกอบจากโฟมพอลิสไตรีนรีไซเคิลและเส้นใยธรรมชาติ. (วิทยานิพนธ์มหาบัณฑิต, มหาวิทยาลัยสงขลานครินทร์ สงขลา).

สมิท, วิลเลียม เอฟ. (2544). วัสดุวิศวกรรม Principles of materials science and engineering. พิมพ์ครั้งที่ 3.กรุงเทพมหานคร : แมคกรอ-ฮิล อินเตอร์เนชั่นแนล.

หฤทภัค กีรติเสว, ฉัตรชัย วีระนิติสกุล และอภิรัตน์ เลาห์บุตร. (2553), ภาพรวมของวัสดุเชิงประกอบ An overview of composite material. วิศวกรรมสารมก., 22(12): 18-32.

จันทร์ฉาย ทองปิ่น และสุดศิริ เหมศรี. (2548). การใช้ยางธรรมชาติที่ถูกคัดแปรเพื่อปรับปรุงความเหนียวของอีพอกซิเรซิน. วิศวกรรมศาสตร์และเทคโนโลยีอุตสาหกรรม. มหาวิทยาลัยศิลปากร.

เอนก ภู่จำนงค์. (2553). วัสดุอีพอกซีเรซินกับการขึ้นรูปชิ้นงานพลาสติก. MTEC. เมษายน - มิถุนายน 2553: 14 – 20.

Przemyslaw D. Pastuszak & Aleksander Muc. (2013). Application of Composite Materials in Modern Constructions. Key Engineering Materials.13(542): 119 – 129.

Ateeq Rahman, Ilias Ali, Saeed M. AL Zahrani & Rabeh H. Eleithy. (2013). A REVIEW OF THE APPLICATIONS

OF NANOCARBON POLYMER COMPOSITES. NANO: Brief Reports and Reviews. 11(6): 185–203.

Andrei Honciuc. (2021). Chemistry of Functional Materials Surfaces and Interfaces.1st edition. Elsevier.

Ming-Yuan Shen , Wen-Yuan Liao, Tan-Qi Wang & Wei-Min Lai. (2021). Characteristics and Mechanical Properties of Graphene Nanoplatelets-Reinforced Epoxy Nanocomposites: Comparison of Different Dispersal Mechanisms. Sustainability. 21(13): 1-18.

Li, H.Y., Chen, H.Z., Xu, W.J., Yuan, F., Wang, J.R. & Wang, M. (2005). Polymer-encapsulated hydrophilic carbon blacknanoparticles free from aggregation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 5(254): 173-178.

Jakab, E. & Omastová, M. (2005). Thermal decomposition of polyolefin/carbon black composites. Journal of Analytical and Applied Pyrolysis. 5(74): 204-214.

Zhang, W., Zhang, X., Liang, M. & Lu, C. (2008). Mechanochemical preparation of surface-acetylated cellulose powder to enhance mechanical properties of cellulose-filler-reinforced NR vulcanizates. Composites Science and Technology, 8(68): 2479-2484.

Khalil, H.A., Firoozian, P., Bakare, I.O., Akil, H.M. & Noor, A.M. (2010). Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties. Materials & Design, 10(31): 3419-3425.

Kuzhir, P., Paddubskaya, A., Plyushch, A., Volynets, N., Maksimenko, S., Macutkevic, J., Kranauskaite, I., Banys, J., Ivanov, E.,Kotsilkova, R. & Celzard, A. (2013). Epoxy composites filled with high surface area-carbon fillers: Optimization of electromagnetic shielding, electrical, mechanical, and thermal properties. Journal of Applied Physics. 13(114): 164304-1 - 164304-7.

Yue, J., Xu, Y. & Bao, J. (2017). Epoxy–carbon black composite foams with tunable electrical conductivity and mechanical properties: Foaming improves the conductivity. Journal of Applied Polymer Science, 17(134): 45071-1 - 45071-10.

Tanusree Bera, S.K. Acharya & Punyapriya Mishra. (2018). Synthesis, mechanical and thermal properties of carbon black/epoxy composites. International Journal of Engineering, Science and Technology. 18(10): 12-20.

Chifei We, Shigeo Asai, Masao Sumita, & Keizo Miyasaka. (1992). Dispersion of Particle in Polymer Composities Filled with Carbon Black Studied by Scanning Electron Microscopy Observation. Integration of CiNii Articles into CiNii Research. 92(48): 69 – 72.

Ai-Jie Ma, Weixing Chen, Yonggang Hou & Gai Zhang. (2010). Dispersion, Mechanical and Thermal Properties of Epoxy Resin Composites Filled with the Nanometer Carbon Black. Polymer-Plastics Technology and Engineering. 10(49): 916–920.

Boris I. Kharisov, Oxana V. Kharissova & Ubaldo Ortiz Méndez. (2014). Methods for Dispersion of Carbon Nanotubes in Water and Common Solvents. Mater. Res. Soc. Symp. Proc. 14(1700): 109 – 114.

Shouci Lu, Robert J. Pugh & Eric Forssberg. (2005). Interfacial Separation of Particles. ScienceDirect.

วัชรพันธุ์ มณีรัตน์. (2549). การปรับปรุงสมบัติการนำไฟฟ้าของยางธรรมชาติโดยใช้คาร์บอนแบล็ก. (วิศวกรรมศาสตร์มหาบัณฑิต สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง กรุงเทพมหานคร).

Julian S. Taurozzi, Vincent A. Hackley & Mark R. Wiesner. (2011). Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment – issues and recommendations. Nanotoxicology, December 2011. 11(5): 711–729.

Thomas Hielscher. (2005). ULTRASONIC PRODUCTION OF NANO-SIZE DISPERSIONS AND EMULSIONS. ENS’05 Paris, France, 14-16 December 2005.

จันทร์จีรา อภิรักษ์เมธาวงศ์. (2557). การศึกษาสมบัติเชิงกลของพอลิเมอร์คอมโพสิทระหว่างพอลิเอทิลีนความหนาแน่นสูงและเศษจากกระบวนการผลิตผลิตภัณฑ์เมลามีน. (วิศวกรรมศาสตรมหาบัณฑิต มหาวิทยาลัยเทคโนโลยีสุรนารี นครราชสีมา).

Nathawat Poopakdee & Warut Thammawichai. (2019). FABRICATION AND MECHANICAL PROPERTIES OF

MULTI-WALLED CARBON NANOTUBE AND CELLULOSE MICROFIBRIL REINFORCED EPOXY COMPOSITE. International Journal of Mechanical and Production Engineering, 19(7): 39 – 43.

ASTM D790. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials 1. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

Ridaoui H, Jada A, Vidal L & Donnet JB. (2006). Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 278(1-3):149–159

Hsiang Yi Hsieh & Weng Tung Cheng. (2021). Fabrication and Stabilization of Oxidized Carbon Black Nanoparticle Dispersion in Aqueous Solution for Photothermal Conversion Enhancement. ACS Omega 2021. 21(6): 3693−3700.

M. Sharif Sh., F. Golestani Fard, E. Khatibi & H. Sarpoolaky. (2009). Dispersion and stability of carbon black nanoparticles, studied by ultraviolet–visible spectroscopy. Journal of the Taiwan Institute of Chemical Engineers. 09(40): 524–527.

George Wypych. Carbon black in Databook of Antistatics, 2014 from https://www.sciencedirect.com/book/9781895198614/databook-of-antistatics.

Ori Ishai.(1967). Delayed yielding of epoxy resin under tension, compression, and flexure. I. Behavior under constant strain rate. Journal of Applied Polymer Science. 67(11): 963-981.

Masoud Yekani Fard, Yingtao Liu & A. Chattopadhyay. (2012). A simplified approach for flexural behavior of epoxy resin materials. The Journal of Strain Analysis for Engineering Design. 47(1): 18–31.