DESIGN TECHNIQUES FOR RIBS TO ENHANCE THE EFFICIENCY OF BIODEGRABLE PLASTIC PRODUCTS

Authors

  • Teerawat Sangkas Rajamangala University of Technology Lanna
  • Supasit Manokruang Rajamangala University of Technology Lanna

Keywords:

Rib design, Plastic product, Plastic injection molding, Finite element analysis, Biodegradable plastic

Abstract

This research focuses on enhancing the strength of plastic spoon and fork products through rib design in conjunction with Finite Element Analysis (FEA) to evaluate structural strength prior to injection mold production. The designed spoon and fork have a thickness (T) of 3 mm, rib height (h) of 1.5 mm, rib angle (α) of 0.5°, rib base radius (r) of 1.5 mm, and rib thickness (t) of 1.5 mm. FEA results compare two cases: Case 1 without reinforcement and Case 2 with reinforced ribs. The analysis revealed that the spoon with rib reinforcement exhibited a 50% reduction in maximum stress, a 68% reduction in maximum strain, and a 31% reduction in maximum displacement. In contrast, the fork with rib reinforcement showed increases in maximum stress and strain by 34% and 80%, respectively, while maximum displacement decreased by 13%. The FEA results indicate that rib reinforcement can help distribute forces more evenly and reduce the risk of failure in certain areas. However, it may also lead to stress concentration in other regions. Therefore, rib design must ensure balanced force distribution. Integrating rib reinforcement techniques with FEA can improve product design, shorten mold production time, reduce costs, and enhance manufacturing efficiency.

References

ดำรง ไชยธีรานุวัฒศิริ. (2536). การออกแบบแม่พิมพ์พลาสติก. กรุงเทพฯ: สำนักพิมพ์ ซีเอ็ดยูเคชั่น.

วีระยุทธ หล้าอมรชัยกุล. (2559). การออกแบบแม่พิมพ์ฉีดพลาสติกด้วยเทคนิคการจำลองทางไฟไนต์ เอลิเมนต์. Naresuan University Engineering Journal, 11(1), 101-109.

ศุภสิทธิ์ มะโนเครื่อง, อดิเรก ชัยนวกุล และธีรวัฒน์ แสงกาศ. (2566). การออกแบบแม่พิมพ์ฉีดพลาสติกแบบแยกข้างด้วยคอมพิวเตอร์ช่วยในงานวิศวกรรม. วารสารวิชาการเทคโนโลยีอุตสาหกรรมและวิศวกรรม มหาวิทยาลัยราชภัฏพิบูลสงคราม, 5(2), 192-206.

Aksen, T., Sener, B., & Firat M. (2020). Failure Prediction Capability of Generalized Plastic Work Criterion. 23rd International Conference on Material Forming, 47, 1235-1240.

Coward, C. (2019). A Beginner's Guide to 3D Modeling: A Guide to Autodesk Fusion 360.

Farah, S., Anderson, D.G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced drug delivery reviews, 107, 367-392.

Hou, B., Huang, Z., Zhou, H., & Li, D. (2018). A hybrid approach for automatic parting curve generation in injection mold design. The International Journal of Advanced Manufacturing Technology, 95, 3985-4001.

Jaiswal, A.K., & Afzal, A. (2023). Design optimization of prismatic rib turbulators in a rectangular channel based on multi-objective criterion. International Journal of Thermal Sciences, 185, 108091.

Kazmer, D.O. (2022). Injection mold design engineering. Carl Hanser Verlag GmbH Co KG.

Kazmer, D.O. (2024). Design of plastic parts. In Applied plastics engineering handbook. William Andrew Publishing.

Lai, J.Y., Wang, M.H., Song, P.P., Hsu, C.H., & Tsai, Y.C. (2018). Recognition and decomposition of rib features in thin-shell plastic parts for finite element analysis. Computer-Aided Design and Applications, 15(2), 264-279.

Land, K.M. (2023). Improving CAD Designs with Autodesk Fusion 360: A project-based guide to modelling effective parametric designs. Packt Publishing Ltd.

Liu, P.F., Zhang, B.J., & Zheng, J.Y. (2012). Finite element analysis of plastic collapse and crack behavior of steel pressure vessels and piping using XFEM. Journal of failure analysis and prevention, 12, 707-718.

Ma, Z., Wei, W., Zu, Y., Huang, M., Zhou, P., Shi, X., & Liu, C. (2021). A novel and simple method to improve thermal imbalance and sink mark of gate region in injection molding. International Communications in Heat and Mass Transfer, 127, 105498.

Mahshid, R., Zhang, Y., Hansen, H. N., & Slocum, A. H. (2021). Effect of mold compliance on dimensional variations of precision molded components in multi-cavity injection molding. Journal of Manufacturing Processes, 67, 12-22.

Md Yusof, M., & Abu Mansor, M. S. (2018). Alternative method to determine parting direction automatically for generating core and cavity of two-plate mold using B-rep of visibility map. The International Journal of Advanced Manufacturing Technology, 96, 3109-3126.

Moayyedian, M., Abhary, K., & Marian, R. (2015). New design feature of mold in injection molding for scrap reduction. Procedia manufacturing, 2, 241-245.

Mourya, A., Nanda, A., Parashar, K., & Kumar, R. (2023). An explanatory study on defects in plastic molding parts caused by machine parameters in injection molding process. Materials Today: Proceedings, 78, 656-661.

Rosato, D.V., & Rosato, M. G. (2012). Injection molding handbook. Springer Science & Business Media.

Taib, N.A.A.B., Rahman, M.R., Huda, D., Kuok, K.K., Hamdan, S., Bakri, M.K.B., & Khan, A. (2023). A review on poly lactic acid (PLA) as a biodegradable polymer. Polymer Bulletin, 80(2), 1179-1213.

Xu, Y., Liu, G., Dang, K., Fu, N., Jiao, X., Wang, J., & Yang, W. (2021). A novel strategy to determine the optimal clamping force based on the clamping force change during injection molding. Polymer Engineering & Science, 61(12), 3170-3178.

Yoon, T.H., Park, H., Kim, J., Jung, B., Park, S., & Byun, J. (2018). Injection molding simulation of rib arrangement consideration for reducing side part warpage of baffle plate in fuel tank. Transactions of the Korean Society of Mechanical Engineers A, 42(11), 1021-1028.

Zhang, S., & Norato, J.A. (2017). Optimal design of panel reinforcements with ribs made of plates. Journal of Mechanical Design, 139(8), 081403.

Downloads

Published

2025-04-29

How to Cite

[1]
T. Sangkas and S. Manokruang, “DESIGN TECHNIQUES FOR RIBS TO ENHANCE THE EFFICIENCY OF BIODEGRABLE PLASTIC PRODUCTS ”, PSRU JITE, vol. 7, no. 1, pp. 1–17, Apr. 2025.