Risk Valuation of Investing in Gold in the COVID-19 Pandemic Situation Using the ARIMA-GARCH Model

Authors

  • Nop Sopipan

Keywords:

VaR, Gold, COVID19, ARIMA-GARCH

Abstract

Investing in the COVID-19 pandemic, investors need tools to prevent risks. One of the important tools is Value at Risk (VaR) In this study, the researchers compared VaR risk values. This study created a risk-value model using historical gold price data. The ARIMA-GARCH model was compared with the GARCH EGARCH GJRGARCH model to obtain a VaR estimator. From January 2017 to August 2022, the period from January 2020 to August 2022 was used to create the risk value model and perform backtesting. The timing of the epidemic in Thailand found that the ARIMA(0,0,0) with zero mean models was suitable for forecasting gold price returns and the volatility model was suitable. The following models were considered, GARCH (1,1), EGARCH (1,1) and GJR-GARCH (1,1), each of which was a t-distribution model for which risk values were calculated and backtested. Instead, the ARIMA-EGARCH-t GARCH model was found to be an effective forecasting tool for back-testing the return of gold prices during the COVID-19 pandemic.

References

Abraham, Bovas & Ledolter, Johannes. (1983). Statistical Methods for Forecasting. New York : John Willey & Sons.
Alexander, C , & Sheedy, E (2008). Developing a stress testing framework based on market risk models. Journal of Banking & Finance, 32, 2220-2236.
Angelidis T., Benos A. and Degiannakis S. (December 2003). The Use of GARCH Models in VaR Estimation.
Bank for International Settlements, (1996b). Supervisory framework for the use of backtesting in conjunction with the internal models approach to market risk capital requirements.
Bollerslev, Tim. (1986). Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics, 31, 307-327.
Enders, Walter. (1995). Applied Econometric Time Series. New York : John Willey & Sons.
Ghalanos A. (August 2017). Introduction to the rugarch package (Version 1.3-8).
Glosten, L.R., Jagannathan, R., & Runkle, D.E. (1992). On the Relation Between the Expected Value and Volatility of the Nominal Excess Returns on Stocks. Journal of Finance, 46, 1779-1801.
Jorion, Philippe. (1996). Value at Risk : The New Benchmark for Controlling Market Risk. Irwin Professional.
Montgomery D., Jennings C. and Kulahci M. (2015). Introduction to Time Series Analysis and Forecasting (Second Edition). New Jersey: Wiley.
Nelson, D.B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347-370.
Saeed, A and Parastoo, M. (2012). Measuring Exchange Rate Fluctuation RisK Using the Value- at-Risk. Journal of Applied Finance & Banking, vol.2 no.3,65-79 (online)
ทรงศิริ แต้สมบัติ. (2549). การพยากรณ์เชิงปริมาณ. กรุงเทพฯ : มหาวิทยาลัยเกษตรศาสตร์.
สุพรรณี อึ้งปัญสัตวงศ์. (2541). เทคนิคการพยากรณ์เชิงสถิติ. ขอนแก่น : หน่วยผลิตเอกสาร คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น.
เสาวนีย์ ฉัตรไพศาลสุข. (2543). การวัดความเสี่ยงของการขาดทุนจากการลงทุนหลักทรัพย์ภายในตลาดหลักทรัพย์แห่งประเทศไทย โดยใช้เทคนิค Value at Risk. (การค้นคว้าอิสระ). กรุงเทพฯ : มหาวิทยาลัยธรรมศาสตร์.
อัญญา ขันธวิทย์. (2547). การวิเคราะห์ความเสี่ยงจากการลงทุนในหลักทรัพย์. กรุงเทพฯ :ตลาดหลักทรัพย์แห่งประเทศไทย.

Downloads

Published

2021-11-17

How to Cite

Sopipan, N. (2021). Risk Valuation of Investing in Gold in the COVID-19 Pandemic Situation Using the ARIMA-GARCH Model. SCIENCE AND TECHNOLOGY RESEARCH JOURNAL NAKHON RATCHASIMA RAJABHAT UNIVERSITY, 6(2), 53–66. retrieved from https://ph02.tci-thaijo.org/index.php/sciencenrrujournal/article/view/245161