Relationship of eutrophication, phytoplankton and water quality: some generalities in Chanthaburi River, Thailand

ผู้แต่ง

  • Jakkapan Potipat Environmental Science and Technology Program, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi 22000, Thailand
  • Kanisorn Lommetta Faculty of Agricultural Technology, Rambhai Barni Rajabhat University, Chanthaburi 22000, Thailand
  • Sarawut Sangsawangchot Faculty of Agricultural Technology, Rambhai Barni Rajabhat University, Chanthaburi 22000, Thailand
  • Sittipat Paewchum Faculty of Agricultural Technology, Rambhai Barni Rajabhat University, Chanthaburi 22000, Thailand

คำสำคัญ:

ยูโทรฟิเคชัน, แพลงก์ตอนพืช, ดัชนีทางนิเวศ, คุณภาพน้ำ, แม่น้ำจันทบุรี

บทคัดย่อ

        การศึกษานี้มุ่งตรวจสอบความสัมพันธ์ของปรากฏการณ์ยูโทรฟิเคชัน ความอุดมสมบูรณ์และความหลากหลายของแพลงก์ตอนพืช  และคุณภาพน้ำในแม่น้ำจันทบุรี  บริเวณอ่าวไทยฝั่งตะวันออกของประเทศไทย โดยปฏิบัติงานสำรวจภาคสนามบริเวณต้นน้ำ กลางน้ำ และปลายน้ำ ครอบคลุมทั้งฤดูฝน ฤดูหนาว และฤดูร้อน พบแพลงก์ตอนพืชทั้งหมด 191 ชนิด จำแนกทางอนุกรมวิธานครอบคลุม 7 คลาส  ส่วนใหญ่คลาส Bacillariophyceae และ Chlorophyceae เป็นคลาสที่มีความโดดเด่น พบว่า Chlorophyceae มีความหนาแน่นสูงสุดบริเวณต้นน้ำในฤดูร้อน  ส่วน Bacillariophyceae แพร่กระจายอยู่บริเวณปลายน้ำ  ดัชนีเชิงนิเวศ ได้แก่ ดัชนีความหลากหลายของแชนอน–วีเนอร์ และดัชนีความอุดมสมบูรณ์ของมาร์กาเลฟมีค่าสูงสุดที่ต้นน้ำระหว่างฤดูฝน  ขณะที่ดัชนีความสม่ำเสมอของพีลูพบค่าสูงสุดบริเวณกลางน้ำในช่วงฤดูร้อน  การวิเคราะห์ทางสถิติพบความสัมพันธ์เชิงบวกอย่างมีนัยสำคัญระหว่างปริมาณออกซิเจนละลายน้ำกับดัชนีเชิงนิเวศทั้งหมด  ซึ่งเน้นย้ำถึงอิทธิพลของความแปรปรวนทางฟิสิกส์-เคมีและอุทกวิทยาต่อโครงสร้างของชุมชนแพลงก์ตอนพืช  โดยภาพรวมตลอดแนวลำน้ำของแม่น้ำจันทบุรีชี้ให้เห็นถึงสถานะทางนิเวศที่ระดับมีโซโทรฟิก

เอกสารอ้างอิง

Adams, J., Taljaard, S., van Niekerk, L., & Lemley, D.A. (2020). Nutrient enrichment as a threat to the ecological resilience and health of South African microtidal estuaries. African Journal of Aquatic Science, 45(1-2), pp.23-40.

Akinnawo, S.O. (2023). Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges, 12, p.100733. https://doi.org/10.1016/j.envc.2023.100733

Ansari, A.A., Gill, S.S., & Khan, F.A. (2011). Eutrophication: Threat to aquatic ecosystems. In Ansari, A.A., & Gill, S.S. (Eds.), Eutrophication: Causes, consequences and control (pp.143-170) Dordrecht : Springer.

Bharathi, M.D., Venkataramana, V., & Sarma, V.V.S.S. (2022). Phytoplankton community structure is governed by salinity gradient and nutrient composition in the tropical estuarine system. Continental Shelf Research, 234, p.104643. https://doi.org/10.1016/j.csr.2021.104643

Bukowska, A., Kaliński, T., Koper, M., Kostrzewska-Szlakowska, I., Kwiatowski, J., Marzec, H.M., & Jasser, I. (2017). Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Scientific Reports, 7(1), pp.1–12.

Camargo, J.A., Alonso, Á., & Puente, M. (2005). Eutrophication downstream from small reservoirs in mountain rivers of Central Spain. Water Research, 39(14), pp.3376-3384.

Chakraborty, S., Karmaker, D., Rahman, Md.A., Bali, S.C., Das, S.K., & Hossen, R. (2021). Impacts of pH and salinity on community composition, growth and cell morphology of three freshwater phytoplankton. Plant Science Today, 8(3), pp.655-661.

Cui , Z., Gao, W., Li, Y., Wang, W., Wang, H., Liu, H., Fan, P., Fohrer, N., & Wu, N. (2023). Dissolved oxygen and water temperature drive vertical spatiotemporal variation of phytoplankton community: evidence from the largest diversion water source area. International Journal of Environmental Research and Public Health, 20(5), p.4307. https://doi.org/10.3390/ijerph20054307

Desikachary, T.V. (1959). Cyanophyta. New Delhi : Indian Council of Agricultural Research. pp.12-686.

Dokulil, M.T., & Teubner, K. (2012). Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia, 698, pp.29-46.

Du, H., Chen, Z., Mao, G., Chen, L., Crittenden, L., Li, R.Y.M., & Chai, L. (2019). Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecological Indicators, 102, pp.686-692.

Dutta, S., Dhan, S.A., Uddin, Sk.N., & Saha, B. (2023). Phytoplankton as an indicator of eutrophication. Ecology, Environment and Conservation, 29(3), pp.1042-1052.

Francé, J., Varkitzi, I., Stanca, E., Cozzoli, F., Skejic, S., Ungaro, N., Vascotto, I., Mozetic, P., Gladan, Z.N., Assimakopoulou, G., Pavlidou, A., Zervoudaki, S., Pagou, K., & Basset, A. (2021). Large-scale testing of phytoplankton diversity indices for environmental assessment in Mediterranean sub-regions (Adriatic, Ionian and Aegean Seas). Ecological Indicators, 126, p.107630. https://doi.org/10.1016/j.ecolind.2021.107630

Gao, W., Xiong, F., Lu, Y., Xin, W., Wang, H., Feng, G., Kong, C., Fang, L., Gao, X., & Chen, Y. (2024). Water quality and habitat drive phytoplankton taxonomic and functional group patterns in the Yangtze River. Ecological Processes, 13, p.1-15.

Gireesh, R., Varghese, M., & Thomas. V.J. (2015). Phytoplankton - collection, estimation, classification and diversity. Kochi : Central Marine Fisheries Research Institute.

Gusmaweti, & Deswati, L. (2018). Community structure, phytoplankton density and physicalchemical factor of batang palangki waters of sijunjung regency, west sumatera. IOP Conference Series: Earth and Environmental Science, 130, p.012023.

Henson, S.A., Cael, B.B., Allen, S.R., & Dutkiewicz, S. (2021). Future phytoplankton diversity in a changing climate. Nature Communications, 12, p.5372.

Huang, B., Wei, N., Hu, Y., & Mao, H. (2021). Microbial communities in water during red tides along the coast of China-A case study of Prorocentrum Donghaiense red tide in the East China Sea. Journal of Marine Science, 3(1), pp.29-38.

Huang, G., Xue, H., Liu, H., Ekkawatpanit, C., & Sukhapunnapha, T. (2019). Duality of seasonal effect and river bend in relation to water quality in the Chao Phraya River. Water, 11(4), p.656. https://doi.org/10.3390/w11040656

Jiang, H.B., Hutchins, D.A., Zhang, H.R., Feng, Y.Y., Zhanng, R.F., Sun, W.W., Ma, W., Bai, Y., Wells, M., He, D., Jiao, N., Wang, Y., & Chai, F. (2024). Complexities of regulating climate by promoting marine primary production with ocean iron fertilization. Earth-Science Reviews, 249, p.104675.

Jiang, L., & Xia, M. (2017). Wind effects on the spring phytoplankton dynamics in the middle reach of the Chesapeake Bay. Ecological Modelling, 363, pp.68-80.

Kunpradid, T., Chaimongkhon, P., & Tagun, R. (2024). Seasonal dynamics and environmental drivers of phytoplankton composition in a tropical dam over 5 years in Chiang Mai, Thailand. Trends in Science, 21(8), p.7930. https://doi.org/10.48048/tis.2024.7930

Margalef, R. (1967). Some concepts relative to the organization of plankton. Oceanography and Marine Biology - An Annual Review, 5, pp.257-289.

Marjang, N., & Merkley, G.P. (2009). Surface velocity coefficients for application of the float method in rectangular and compound open channels. Irrigation Science, 27, pp.457-470.

Meerssche, E.V., Greenfield, D.I., & Pinckney, J.L. (2018). Coastal eutrophication and freshening: Impacts on Pseudo-nitzschia abundance and domoic acid allelopathy. Estuarine, Coastal and Shelf Science, 209, pp.70-79. https://doi.org/10.1016/j.ecss.2018.05.013

Minggat, E., Roseli, W., & Tanaka, Y. (2021). Nutrient absorption and biomass production by the marine diatom Chaetoceros Muelleri: effects of temperature, salinity, photoperiod, and light intensity. Journal of Ecological Engineering, 22(1), pp.231-240. https://doi.org/10.12911/22998993/129253

Napaldet, J.T. (2023). Plant species and ecosystem diversity along national road in mountain sites: The case of Kennon Road in Cordillera Central Range, Philippines. Taiwania, 68(3), pp.339-348.

Nhien, H.T.H., & Giao, N.T. (2024). Evaluation of surface water quality using biodiversity indices in phu my species- habitat conservation area, Kien Giang Province, Vietnam. Ecological Engineering & Environmental Technology, 25(3), pp.102-112. https://doi.org/10.12912/27197050/178386

Niyoyitungiye, L, Giri, A., & Mishra, B.P. (2020). Quantitative and qualitative analysis of phytoplankton population in relation to environmental factors at the targeted sampling stations on the Burundian littoral of Lake Tanganyika. International Journal of Fisheries and Aquatic Studies, 8(1), pp.110-121.

Padisák, J., Crossetti, L.O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia, 621(1), pp.1-19.

Prescott, G.W. (1962). Algae of the Western Great Lake Area. Dubuque Iowa : WM. C. Brown Company Publisher.

Reynolds, C.S. (2006). Ecology of phytoplankton. Cambridge: Cambridge University Press.

Sharma, B.K., & Sharma, S. (2022). Phytoplankton diversity of a demineralized urban wetland of Meghalaya State of Northeast India: The spatio-temporal variations and the role of abiotic factors. Research in Ecology, 4(2), pp.3-23.

Solórzano, G.G., Martinez, M.G.O., Vazquez, A.L., Garfias, M.B.M., Zuñiga, R.E.Q., & Conforti, V. (2011). Trachelomonas (Euglenophyta) from a eutrophic reservoir in Central Mexico. Journal of Environmental Biology, 32, pp.463-471.

Taipale, S.J., Vuorio, K., Strandberg, U., Kahilainen,K.K., Järvinen, M., Hiltunen, M., Peltomaa, E., & Kankaala, P. (2016). Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption. Environment International, 96, pp.156-166.

Thai Meteorological Department. (2024). Annual weather summary 2024. Bangkok : Ministry of Digital Economy and Society.

Tilman, D., Kilham, S.S., & Kilham, P. (1982). Phytoplankton community ecology: The role of limiting nutrients. Annual Review of Ecology and Systematics, 13, pp.349-372.

Wang, J., & Zhang, Z. (2020). Phytoplankton, dissolved oxygen and nutrient patterns along a eutrophic river-estuary continuum: Observation and modeling. Journal of Environmental Management, 261, p.110233.

Xiong, W., Li, J., Chen, Y., Shan, B., Wang, W., & Zhan, A. (2016). Determinants of community structure of zooplankton in heavily polluted river ecosystems. Scientific Reports, 6, pp.22043-22053.

Yoon, S.J., Lee, J., Kim, H.G., Kwon, B.O., Kim, J., Hong, S., & Khim, J.S. (2024). Phytoplankton assemblage responses to massive freshwater inputs and anthropogenic toxic substances contamination in the Geum River Estuary, South Korea. Marine Pollution Bulletin, 199, p.116020. https://doi.org/10.1016/j.marpolbul.2023.116020

Yu, H., Shi, X., Zhao, S., Sun, B., Liu, Y., Arvola, L., Li, G., Wang, Y., Pan, X., Wu, R., & Tian, Z. (2022). Primary productivity of phytoplankton and its influencing factors in cold and arid regions: A case study of Wuliangsuhai Lake, China. Ecological Indicators, 144, p.109545.

https://doi.org/10.1016/j.ecolind.2022.109545

Zhu, Y., Miao, Q., Lyu, H., Zheng, Y., Liu, W., Li, Y., Li, J., Chen, F., & Miao, S. (2025). An approach for mapping phytoplankton communities in freshwater lakes based on phytoplankton absorption features. Water Research, 282, p.123665. https://doi.org/10.1016/j.watres.2025.123665

ดาวน์โหลด

เผยแพร่แล้ว

2025-12-29

รูปแบบการอ้างอิง

Potipat, J., Lommetta, K., Sangsawangchot, S., & Paewchum, S. (2025). Relationship of eutrophication, phytoplankton and water quality: some generalities in Chanthaburi River, Thailand. วารสารวิจัย วิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครราชสีมา, 10(2), 63–77. สืบค้น จาก https://ph02.tci-thaijo.org/index.php/sciencenrrujournal/article/view/261492