THE ELEMENT OF A RING SATISFYING SOME DIVISIBILITY

Authors

  • Kanyaphak Paikhlaew Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University
  • Yanapat Tongron Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University
  • Supattra Kerdmongkon Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University
  • Nitiphoom Adsawatithisakul Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University

Keywords:

Commutative ring with identity, Divisibility, Long division

Abstract

Let R be a commutative ring with identity 1 and m≥n. We establish d∈R satisfying each of the following two conditions:
1. (bx^n-b) | (ax^m+d) if b | a and
2. (bx^n-1) | (ax^m+d) if b^k | a,
where k is the quotient from dividing m by n and a, b∈R.

References

Burton D. M., (2011). Elementary Number Theory. New York: The McGraw-Hill Companies, Inc.

Durbin J. R. (2009). Modern Algebra: An Introduction (6th ed). New York: The University of Texas at Austin. John Wiley & Sons, Inc.

Lovett S. (2015). Abstract Algebra: Structures and Applications. New York: Chapman and Hall/CRC.

Malik D. S., Mordeson John M. and Sen M. K. (1997). Fundamentals of abstract algebra. New York: The McGraw-Hill Companies, Inc.

Niven I., Zuckerman H. S. and Montgomery H. L. (1991). An Introduction to the Theory of Numbers. New York: John Wiley & Sons, Inc.

Stitz C. and Zeager J. (2013). College Algebra. Retrieved Oct 10, 2022, from https://www.stitz-zeager.com/szca07042013.pdf.

Published

2024-06-07

How to Cite

Paikhlaew, K., Tongron, Y., Kerdmongkon , S. ., & Adsawatithisakul , N. . (2024). THE ELEMENT OF A RING SATISFYING SOME DIVISIBILITY. SCIENCE AND TECHNOLOGY RESEARCH JOURNAL NAKHON RATCHASIMA RAJABHAT UNIVERSITY, 9(1), 1–7. retrieved from https://ph02.tci-thaijo.org/index.php/sciencenrrujournal/article/view/250431