Directivity Enhancement of Microstrip Parallel Coupled Lines Techniques

Main Article Content

Somchat Sonasang
https://orcid.org/0000-0002-3261-4547
นิวัตร์ อังควิศิษฐพันธ์

Abstract

This article presents a review of technologies to enhance or compensate for directivity of the microstrip parallel coupled lines. By describing the basic features of the microstrip parallel coupled lines. There are 2 main techniques, which are the distributed compensation and the lumped compensation. In addition, this paper also presents the advantages and disadvantages of each compensation coupled line technique.

Article Details

How to Cite
Sonasang, S., & อังควิศิษฐพันธ์ น. (2021). Directivity Enhancement of Microstrip Parallel Coupled Lines Techniques . Journal of Engineering Technology Access (JETA) (Online), 1(1), 12–31. Retrieved from https://ph02.tci-thaijo.org/index.php/JETA/article/view/244237
Section
Review Articles

References

D. K. Misra. (2001). Radio-Frequency and Microwave Communication Circuits: Analysis and Design, New York: John Wiley & Sons, 1-3.

C. Kai. (2000). RF and microwave wireless systems, New York: JOHN WILEY & SONS, INC., 1-10.

J. S. H. a. M. J. Lancaster. (2001). Microstrip Filters for RF/Microwave Applications, New York, NY: John Wiley & Sons, 77-90.

J. F. White. (2003). High Frequency Techniques: An Introduction to RF and Microwave Design and Computer Simulation, Wiley-IEEE Press.

D. M. Pozar. (2011). Microwave Engineering, (4th Ed.), NJ: Wiley.

T. C. a. J. Long. (2006). Shielded passive device for silicon-based monolithic microwave and millimeter-wave integrated circuits, IEEE J. Solid-State Circuits, 41(5), 1183-1200.

S. Diebold. (March, 2016). A Novel 1x4 Coupler for Compact and High-Gian Power Amplier MMICs Around 250 GHz, IEEE Transections on Microwave Theory and Techniques, 63(3), 999-1006.

R.K. Mongiar. (2007). RF and Microwave Coupled-Line Circuits, (2rd Ed.), Norwood, MA: Artech House.

R. A. (1988). High performance parallel coupled microstrip filter, in IEEE MTT-S Int. Microwave Symp, Dig.

P. Alan. (1988). A high directivity microstrip coupled lines techniques, in IEEE MTT-S Int. Microwave Symp. Dig.

B. Sheleg and B. E. Spielman. (December, 1974). Broad-Band Directional Couplers Using Microstrip with Dielectric Overlays, IEEE Transactions on Microwave Theory and Techniques, 22(12), 1216 - 1220.

D. D. Paolino. (1978). MIC Overlay Coupler Design Using Spectral Domain Techniques, IEEE Transactions on Microwave Theory and Techniques, 26(9), 646 - 649.

L. Su, T. Itoh and J. Rivera. (1983). Design of an Overlay Directional Coupler by a Full-Wave Analysis, IEEE Transactions on Microwave Theory and Techniques, 31(12), 1017 - 1022.

S. Uysal and H. Aghvami. (1989). Synthesis, design, and construction of ultra-wide-band nonuniform quadrature directional couplers in inhomogeneous media, IEEE Transactions on Microwave Theory and Techniques, 37(6), 969 - 976.

J. L. Klein and K. Chang. (1990). Optimum dielectric overlay thickness for equal even- and odd-mode phase velocities in coupled microstrip circuits, Electronics Letters, 26(5), 274 - 276.

G. Schaller. (1977). Optimization of microstrip directional couplers with lumped capacitors, AEU, 31, 301-307.

D. Kajfez. (March, 1978). Raise Coupler Directivity with Lumped Compensation, Microwaves, 27, 64-70.

S. L. March. (1982). Phase Velocity Compensation in Parallel-Coupled Microstrip, IEEE MTT-S International Microwave Symposium Digest, 410-412, http://doi.org/10.1109/MWSYM.1982.1130739.

M. Dydyk. (1990). Accurate design of microstrip directional couplers with capacitive compensation, IEEE International Digest on Microwave Symposium, 1, 581-584, http://doi.org/10.1109/MWSYM.1990.99647.

M. Dydyk. (June, 1999). Microstrip directional couplers with ideal performance via single-element compensation, IEEE Transactions on Microwave Theory and Techniques, 47(6), 956-964, http://doi.org/10.1109/22.769332.

Jia-Liang Chen, Sheng-Fuh Chang and Chain-Tin Wu. (2002). A high-directivity microstrip directional coupler with feedback compensation, IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), 1, 101-104. http://doi.org/10.1109/MWSYM.2002.1011569.

R. Phromloungsri, M. Chongcheawchamnan and I. D. Robertson. (2006). Inductively Compensated Parallel Coupled Microstrip Lines and Their Applications, IEEE Transactions on Microwave Theory and Techniques, 54(9), 3571 - 3582.

R. Phromloungsri, V. Chamnanphrai and M. Chongcheawchamnan. (2006). Design high-directivity parallel-coupled lines using quadrupled inductive-compensated technique, in 2006 Asia-Pacific Microwave Conference.

S. Lee and Y. Lee. (2009). An Inductor-Loaded Microstrip Directional Coupler for Directivity Enhancement, IEEE Microwave and Wireless Components Letters, 19(6), 362-364.

S. Lee and Y. Lee. (2010). A Design Method for Microstrip Directional Couplers Loaded With Shunt Inductors for Directivity Enhancement, IEEE Transactions on Microwave Theory and Techniques, 58(4), 994-1002.

H. Liu, S. J. Fang, Z. Wang and Y. Zhou. (2014). Miniaturization of trans-directional coupled line couplers using series inductors, Progress In Electromagnetics Research C, 46, 171-177.

L. Wang, G. Wang and J. Siden. (2015). Design of High-Directivity Wideband Microstrip Directional Coupler With Fragment-Type Structure, IEEE Transactions on Microwave Theory and Techniques, 63(12), 3962-3970.

J. Ha, W. Shin and Y. Lee. (2017). An Inductive-Loading Method for Directivity Enhancement of Microstrip Coupled-Line Couplers, IEEE Microwave and Wireless Components Letters, 27(4), 356-358.

C. T. Nghe, F. Rautschke and G. Boeck. (2017). Performance optimization of capacitively compensated directional couplers, 47, European Microwave Conference (EuMC), 408-411. http://doi.org/10.23919/EuMC.2017.8230876.

M. Hammad Akhtar, M. Ayaz Zakir, Hammad M. Cheema. (2019). Weakly coupled directional coupler with simultaneous wide bandwidth and high directivity, Microwave and Optical Technology Letters, 2019.

W. Zhang and G. Wang.(2020). Design of High-Directivity Directional Couplers With 2-bit Fragment-type Structure 2020. IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-3, http://doi.org/10.1109/NEMO49486.2020.9343552

B. G. Liu, Y. P. Lyu, Y. J. Zhou, L. Zhu and C. H. Cheng. (2020). Miniaturized 3-dB Quadrature Coupler with Hybrid Elements using Multilayer Substrates, IEEE MTT-S International Wireless Symposium (IWS), 2020, pp. 1-3, http://doi.org/10.1109/IWS49314.2020.9360142

Somkuan Srisawat and Niwat Angkawisittpan. (2019). A Design of Microstrip Branch-Line Coupler with Bandstop Filter Based on SITLs Compensated Parallel Coupled Lines. KKU Research Journal (Graduate Studies), 19(4), 139-148.

Sonasang, S. and R. Phromloungsri. (2018). Improvement of microstrip band pass filter harmonic spurious suppression performance using band stop filter feed lines. Kasem Bundit Engineering Journal, 8(Special Issue), 239-246.

Nuanon, A, Angkawisittpan, N, Photong, C, Siritaratiwat. (2015). A. Detection of Water Adulteration in Honey Using Coaxial Capacitor Sensor. SWN Engineering Journal (2015), 10(2), 9- 18.