Preparation of zinc oxide nanoparticles for cancer treatment

Main Article Content

Suttirak Pairoj


Zinc oxide nanoparticles (ZnO NPs) have become one of the most popular metal oxide nanoparticles due to their excellent biocompatibility, economic, and low toxicity. Various methods of synthesis have been adopted in the production of ZnO NPs to meet its high demand. The environmental implications and economic challenges attached to most of the means of ZnO NPs synthesis have resulted in the quest for other alternatives with environmental and economic benefits. Recently in nanotechnology research, synthesis of nanoparticle from green chemistry pathways has been preferred due to its natural biological reduction property which reduces the utilization and exposure of toxic chemical to the environment when compared to physical and chemical methods. ZnO NPs have emerged a promising potential in biomedicine, especially in the fields of anticancer and antibacterial fields, which are involved with their potent ability to trigger excess reactive oxygen species (ROS) production, release zinc ions, and induce cell apoptosis. In addition, zinc is well known to keep the structural integrity of insulin. So, ZnO NPs also have been effectively developed for cancer treatment.


Download data is not yet available.

Article Details

How to Cite
Pairoj, S. (2022). Preparation of zinc oxide nanoparticles for cancer treatment. Journal of Engineering Technology Access (JETA) (Online), 2(1), 22–34. Retrieved from
Review Articles


Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S. & Vaidya, B. (2017). Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications, Drug Discovery Today, 22(12), 1825–1834.

Smijs, T. G. & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness, Nanotechnology, Science and Applications, vol. 4, pp. 95–112.

Ruszkiewicz, J. A., Pinkas, A., Ferrer, B., Peres, A., Tsatsakis, & Aschner, M. (2017). Neurotoxic effect of active ingredients in sunscreen products, a contemporary review, Toxicology Reports, vol. 4, pp. 245–259.

Kolodziejczak-Radzimska, A. & Jesionowski, T. (2014). Zinc oxide–from synthesis to application: a review, Materials, vol. 7, no. 4, pp. 2833–2881.

Sahoo, S., Maiti, M., Ganguly, A., George, J.J. & Bhowmick, A. K. (2007). Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber, Journal of Applied Polymer Science, vol. 105, no. 4, pp. 2407–2415.

Newman, M. D., Stotland, M. & Ellis, J. I. (2009). The safety of nanosized particles in titanium dioxide- and zinc oxidebased sunscreens, Journal of the American Academy of Dermatology, vol. 61, no. 4, pp. 685–692.

Hatamie, A., Khan, A. & Golabi, M. (2015). Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material, Langmuir, vol. 31, no. 39, pp. 10913–10921.

Xiao, F. X., Hung, S. F., Tao, H. B., Miao, J., Yang, H. B. & Liu, B. (2014). Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D-1D hybrid nanostructures, Nanoscale, 6(24), 14950–14961.

Bandeira, Marina, Marcelo, G., Mariana, R.E., Declan, M., Devine, & Janaina, S.C. (2020) Green Synthesis of Zinc Oxide Nanoparticles: A Review of the Synthesis Methodology and Mechanism of Formation, Sustainable Chemistry and Pharmacy 15.

Costa, B. C., E. A. Rodrigues, E. A., Tokuhara, C. K., Oliveira, R. C., Lisboa-Filho, P. N. & Rocha, L. A. (2018). Zno Nanoparticles with Different Sizes and Morphologies for Medical Implant Coatings: Synthesis and Cytotoxicity, BioNanoScience, 8(2), 587-95.

Malhotra, S.P.K & Mandal, T.K. (2016). Biomedical applications of zinc oxide nanomaterials in cancer treatment: A review, SCIREA Journal of Chemistry. 67-68.

Bisht, G. & Rayamajhi, S. (2016). ZnO nanoparticles: A promising anticancer agent, Nanobiomedicine. 1–11.

Cai, X., Luo, Y., Zhang, W., Du, D., & Lin, Y. (2016). pH-Sensitive ZnO Quantum Dots-Doxorubicin Nanoparticles for Lung Cancer Targeted Drug Delivery. ACS Applied Material & Interfaces, 8(34), 22442-22450.

Zhao, W., Wei, J.S., Zhang, P., Chen, J., Kong, J.L., Sun, L.H., Xiong, H.M. & Möhwald, H. (2017). Self-Assembled ZnO nanoparticle Capsules for Carrying and Delivering Isotretinoin to Cancer Cells. ACS Applied Material & Interfaces, 9(22), 18474-18481.

Liu, J., Ma, X., Jin, S., Xue, X., Zhang, C., Wei, T., Guo, W., & Liang, X.J. (2016). Zinc Oxide Nanoparticles as Adjuvant to Facilitate Doxorubicin Intracellular Accumulation and Visualize pH-Responsive Release for Overcoming Drug Resistance. Molecular Pharmaceutics, 13(5), 1723-1730.

Mansour, Shehab, Ashraf, F. & Mohamed, K. (2017). Synthesis and Study of Zno Nanoparticles by Polymer Pyrolysis Route Using Two Different Polymerization Initiators. International Journal of Applied Ceramic Technology, 14(6), 1213-21.

Miri, Abdolhossien, Nafiseh, M., Omolbanin, E., Mehrdad, K. & Mina, S. (2019). Zinc Oxide Nanoparticles: Biosynthesis, Characterization, Antifungal and Cytotoxic Activity. Materials Science and Engineering, C104.

Pineda-Reyes, Ana, M. & Olvera, M. de la L. (2018). Synthesis of Zno Nanoparticles from Water-in-Oil (W/O) Microemulsions. Materials Chemistry and Physics, 203, 141-47.

G Bisht, G., Rayamajhi, S., Kc, S., Paudel, S. N., Karna, D. & Shrestha, B. G. (2016). Synthesis, characterization, and study of in vitro cytotoxicity of ZnO-Fe3O4 magnetic composite nanoparticles in human breast cancer cell line (MDA-MB231) and mouse fibroblast (NIH 3T3), Nanoscale Research Letters, 11(1), 537.

Bettini, S., Pagano, R. & Bonfrate, V. (2015). Promising piezoelectric properties of new ZnO@octadecylamine adduct, Journal of Physical Chemistry C, 119(34), 20143–20149.

Pagano, R., Quarta, A., Pal, S., Licciulli, A., Valli, L. & Bettini, S. (2017). Enhanced solar-driven applications of ZnO@Ag patchy nanoparticles, Journal of Physical Chemistry C,121(48), 27199–27206.

Rahimi, K.S.M., Ghasem, Masoud, H.T., Touran, A., Soheyla, Y. & Elham, S. (2019). Green Synthesis of Zinc Oxide Nanoparticles and Evaluation of Anti-Angiogenesis, AntiInflammatory and Cytotoxicity Properties." Journal of Biosciences, 44(2).

Rajan, Murugan, Allen J., Anthuvan, Kasipandi M., Naveen K.K., Saravanan, S., Saikumar, S., Viswanathan, C., Parimelazhagan T. & Narendra, N. (2019). Comparative Study of Biological (Phoenix Loureiroi Fruit) and Chemical Synthesis of Chitosan-Encapsulated Zinc Oxide Nanoparticles and Their Biological Properties, Arabian Journal for Science and Engineering, 45(1), 15-28.

Wang, Z. J., Zhang, H. M., Zhang, L. G., Yuan, J. S., Yan, S. G. & Wang, C. Y. (2003). Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction,”Nanotechnology, 14(1), 11–15.

Spanhel, L. & Anderson, M. A. (1991). Semiconductor clusters in the sol-gel process-quantized aggregation, gelation, and crystal-growth in concentrated ZnO colloids, Journal of the American Chemical Society, 113(8), 2826–2833.

Mohamad, S., Siti, N.A., Kamyar, S., Magdelyn, M.T.W., Sin-Yeang T., Jactty, C. & Nur A.I. (2019). Cytotoxicity and Antibacterial Activities of Plant-Mediated Synthesized Zinc Oxide (ZnO) Nanoparticles Using Punica Granatum (Pomegranate) Fruit Peels Extract, Journal of Molecular Structure, 1189, 57-65.

Mohamed Isa, E. D., N. W. Che Jusoh, R. Hazan, & K. Shameli. (2020). Pullulan Mediated Zinc Oxide Microparticles: Effect of Synthesis Temperature, IOP Conference Series: Materials Science and Engineering, 808.

Teoh, W., Yang, A., Rose, M. & Lutz, (2010). Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication, Nanoscale, 2(8), 1324–1347.

Rajan, Murugan, Allen, J., Anthuvan, Kasipandi, M., Naveen, K.K., Saravanan, S., Saikumar, S., Viswanathan, C., Parimelazhagan, T. & Narendra, N. (2019) Comparative Study of Biological (Phoenix Loureiroi Fruit) and Chemical Synthesis of Chitosan-Encapsulated Zinc Oxide Nanoparticles and Their Biological Properties. Arabian Journal for Science and Engineering, 45(1), 15-28.

Saberon, Saberina I., Monet Concepcion Maguyon-Detras, Maria Victoria P. Migo, Marvin U. Herrera, & Ronniel D. Manalo. (2018). Microwave-Assisted Synthesis of Zinc Oxide Nanoparticles on Paper, Key Engineering Materials, 775, 163-68

Hemra, H., Kamyar, S. & Mostafa, Y. (2020). Preparation of Zinc Oxide Nanoparticles and its Cancer Treatment Effects: A Review Paper, Journal of Advanced Research in Micro and Nano Engineering, 2(1), 1-11.

Bisht, G. & Rayamajhi, S. (2016). ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine, 3(9), 9-19.

Sharmila, Govindasamy, Marimuthu, T., & Chandrasekaran, M. (2019). Green Synthesis of Zno Nanoparticles Using Tecoma Castanifolia Leaf Extract: Characterization and Evaluation of Its Antioxidant, Bactericidal and Anticancer Activities, Microchemical Journal, 145, 578-87.

Taghavi, F., Saeid, A.R., Sajjad, M. & Pegah, A.A. (2017). Green Synthesis of Zinc Oxide Nanoparticles Using Arabic Gum and Photocatalytic Degradation of Direct Blue 129 Dye under Visible Light. Journal of Materials Science: Materials in Electronics, 28(18), 13596-601.

Tang, Q., H. Xia, W. Liang, X. Huo, & X. Wei. (Jan 2020). Synthesis and Characterization of Zinc Oxide Nanoparticles from Morus Nigra and Its Anticancer Activity of Ags Gastric Cancer Cells. J Photochem Photobiol B, 202.

Vijayakumar, S., K. Saravanakumar, B. Malaikozhundan, M. Divya, B. Vaseeharan, E. F. Duran-Lara, & Wang, M. H. (Feb 1 2020). Biopolymer K-Carrageenan Wrapped Zno Nanoparticles as Drug Delivery Vehicles for Anti Mrsa Therapy." Int J Biol Macromol, 144,9-18.

Wu, Dudu, Zhi, C., Kangrong C., Dongling Z., Jiaxi C. & Bin J. (2014). Investigation into the Antibacterial Activity of Monodisperse Bsa-Conjugated Zinc Oxide Nanoparticles, Current Applied Physics, 14(11), 1470-75.

Wu, H. & Zhang, J. (Feb 2018). Chitosan-Based Zinc Oxide Nanoparticle for Enhanced Anticancer Effect in Cervical Cancer:A Physicochemical and Biological Perspective, Saudi Pharm J, 26(2), 205-10.

Vijayakumar, S., K. Saravanakumar, B. Malaikozhundan, M. Divya, B. Vaseeharan, E. F. Duran-Lara, & M. H. Wang. (Feb 1 2020). Biopolymer K-Carrageenan Wrapped ZnO Nanoparticles as Drug Delivery Vehicles for Anti Mrsa Therapy. Int J Biol Macromol, 144 . 9-18.

Vijayakumar, S., B. Vaseeharan, B. Malaikozhundan, & M. Shobiya. (2016). Laurus Nobilis Leaf Extract Mediated Green Synthesis of Zno Nanoparticles: Characterization and Biomedical Applications. Biomed Pharmacother, 84, 1213-22.

Wang, J., J. S. Lee, D. Kim, & L. Zhu. (2017). Exploration of Zinc Oxide Nanoparticles as a Multitarget and Multifunctional Anticancer Nanomedicine, ACS Appl Mater Interfaces, 9(45), 39971-84.

Turney, T.W., Duriska, M.B., Jayaratne, V., Elbaz A, & Hastings A.S. (2012). Formation of zinccontaining nanoparticles from Zn(2)(+) ions in cell culture media: implications for the nanotoxicology of ZnO. Chem Res Toxicol, 25(10), 2057-66.

Casey, J.R., Grinstein, S. & Orlowski, J. (2010). Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol, 11(1), 50-61.

Shen, C., James, S.A, de Jonge, M.D., Turney, T.W., Wright, P.F. & Feltis, B.N. (2013). Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci, 136(1), 120-30.

Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F. & Li, L. (2010). Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett, 199(3), 389-97.

Manke, A., Wang, L. & Rojanasakul, Y. (2013). Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxici‐ty. BioMed Research Internationa, 15.

Driscoll, K., Howard, B., Carter, J., Janssen, Y.W., Mossman, B. & Isfort R. (2001). Mitochondrial-Derived Oxidants and Quartz Activation of Chemokine Gene Expression. In: Dansette P, Snyder R, Dela‐forge M, Gibson GG, Greim H, Jollow D, et al.,editors. Biological Reactive Intermediates VI.Advances in Experimental Medicine and Biology. 500: Springer US, 489-96.

Rasmussen, J.W., Martinez, E., Louka, P. & Wingett, D.G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applica‐tions. Expert Opin Drug Deliv, 7(9), 1063-77.

Wilson, M.R., Lightbody, J.H., Donaldson, K., Sales, J. & Stone, V. (2002). Interactions between Ultrafine Particles and Transition Metals in Vivo and in Vitro. Toxi‐ cology and Applied Pharmacology, 184(3). 172-9.

Gyu, C.Y., Chunrui, W. & Won, I. P. (2005). ZnO nanorods: synthesis, characterization and applications.Semiconductor Science and Technology, 20(4), S22.

Kim, Y.J., Yu, M., Park, H.O. & Yang S. (2010). Comparative study of cytotoxicity, oxidative stress and genotox‐ icity induced by silica nanomaterials in human neuronal cell line. Molecular & Cellular Toxicology, 6(4), 336-43.

Yadollahi, M., S. Farhoudian, S. Barkhordari, I. Gholamali, H. Farhadnejad, & H. Motasadizadeh. (2016). Facile Synthesis of Chitosan/Zno Bio-Nanocomposite Hydrogel Beads as Drug Delivery Systems. Int J Biol Macromol, 82, 273-8.

Maheswari, Uma A., Lakshmana Prabu S, & Purat chikody A. (2018). Biosynthesis of Zinc Oxide Nanoparticle: A Review on Greener Approach. MOJ Bioequivalence & Bioavailability, 5(3).

Dhandapani, Kayal, V., Devipriya, A., Arumugam, D.G., Purandaradas, A.B., Sundaram, M., Purushothaman, K. & Babujanarthanam, R. (2020). Green Route for the Synthesis of Zinc Oxide Nanoparticles from Melia Azedarach Leaf Extract and Evaluation of Their Antioxidant and Antibacterial Activities, Biocatalysis and Agricultural Biotechnology, 24.

Yusefi, M., K. Shameli, H. Jahangirian, S. Y. Teow, H. Umakoshi, B. Saleh, R. Rafiee-Moghaddam, & T. J. Webster.(2020). The Potential Anticancer Activity of 5-Fluorouracil Loaded in Cellulose Fibers Isolated from Rice Straw, Int J Nanomedicine, 15. 5417-32.