Optimization of the AA6061-T6 aluminum alloy Burnishing Process by response surface method

Main Article Content

Panuwat Thosa
Anantachin Khamsupa

Abstract

The influence of operational constraints, the burnishing procedure was conceived and formulated with the aim of enhancing the finalization of the workpiece, thereby mitigating production time. This investigation aimed to scrutinize the optimization potential of the burnishing process applied to AA6061-T6 aluminum alloy through CNC lathe operations, with a specific focus on its impact on tensile strength. The experimentation sought to identify the optimal parameters for the burnishing process, establishing a rotational speed of 200 revolutions per minute, a feed rate of 0.2571 meters per minute, and a feed depth of 0.09 millimeters. The resultant outcome exhibited a peak tensile strength of 370 megapascals. Subsequent microstructure analysis of the workpiece revealed that diverse factors exerted negligible influence on the structural integrity, particularly on the injection structure.

Article Details

How to Cite
Thosa, P., & Khamsupa, A. . (2023). Optimization of the AA6061-T6 aluminum alloy Burnishing Process by response surface method. Journal of Engineering Technology Access (JETA) (Online), 3(2), 25–35. https://doi.org/10.14456่/่jeta.2023.6
Section
Research Articles

References

Ozer, M., Dalli, K., & Ozer, A. (2023). Effect of ball-burnishing on surface integrity and fatigue behaviour of 7175-T6 AA. Materials Science and Technology, 39(2), 248-257.

Saffar, S., & Eslami, H. (2022). Increasing the fatigue life and surface improvement of AL7075 alloy T6 by using ultrasonic ball burnishing process. International Journal of Surface Science and Engineering, 16(3), 181-206.

Suriya Prasomthong, & Suriya Namkaew, (April, 2021). Application of Taguchi Method for Burnishing Process of AA5052 Aluminum Alloy by Studying the Optimization of Production Machining Parameters.

H. Yilmaz and R. Sadeler, Effect of ball burnishing treatment on the fatigue behavior of 316L stainless steel operating under anodic and cathodic polarization potentials.Metallurgical and Materials Transactions A, 2018, 49(11), 5393-5401.

A. Sova, C. Courbon, F. Valiorgue, J., Rech, and Ph. Bertrand, Effect of turning and ball burnishing on the microstructure and residual stress distribution in stainless steel cold spray deposits. Journal of Thermal Spray Technology, 2017, 26(8), 1922-1934.

Raza, A., & Kumar, S. (2022). A critical review of tool design in burnishing process. Tribology International, 174, 107717.

Diekmann, James E., & Nelson, Mark C. (1985). Construction Claims: Frequency and Severity. Journal of Management in Engineering, 111(1), 74-81.

Ekakul, T. (2000). Research Methods in Behavioral Science and Social Science. (8th edition). Chulalongkorn University, Bangkok, Thailand.

K. Hinkelmann and O. Kempthorne, Design and analysis of experiments, Volume 1:

Introduction to experimental design 1st ED., John Wiley and Sons, Inc., NY, USA, 1994

Prasomthong, S., & Charoenrat, S. (2022). The The optimization of welding hardfacing on wear resistance of FC-25 grey cast iron steel substrate by response surface methodology (RSM). SNRU Journal of Science and Technology, 14(2), 245154-245154.

Charoenrat, S., Pookamnerd, Y., & Prasomthong, S. (2021). การพิจารณาสภาวะที่เหมาะสมในการเชื่อมพอกผิวต่อการต้านทาน การสึกหรอด้วยกระบวนการเชื่อมแก๊สทังสเตนอาร์คแบบลวดร้อนโดยวิธีพื้นผิวตอบสนอง. The Journal of Industrial Technology, 17(2), 87-102.

K.Hinkelmann and O. Kempthorne, Design and analysis of experiments, Volume 1: Introduction to experimental design 1st ED., John Wiley and Sons, Inc., NY, USA, 1994