Mobius Sequences

Main Article Content

Sompong Chuysurichay
Lalita Apisornpanich

Abstract

In this research, we obtain a new derivation of the closed-form solution of a Mobius sequence defined by


gif.latex?z_{n+1}=\frac{az_n+b}{cz_n+d}


where gif.latex?a,b,c and gif.latex?d are real numbers with gif.latex?ad-bc\neq&space;0

Article Details

How to Cite
Chuysurichay, S., & Apisornpanich, L. (2021). Mobius Sequences. Mathematical Journal by The Mathematical Association of Thailand Under The Patronage of His Majesty The King, 66(703), 32–41. retrieved from https://ph02.tci-thaijo.org/index.php/MJMATh/article/view/217776
Section
Research Article

References

De Pree, J. D. and Thron, W. J. (1962). On Sequences of Moebius Transformations. Mathematische Zeitschrift, 80 (1), p. 184 - 193.

Eljoseph, N. (1968). On The Iteration of Linear Fractional Transformations. The American Mathematical Monthly, 75 (4), p. 362 - 366.

Karlsson, J., Wallin, H., and Gelfgren, J. (1991). Iteration of Möbius Transforms and Continued Fractions. The Rocky Mountain Journal of Mathematics, 21 (1), p. 451 - 472.

Liebeck, H . (1961). The Convergence of Sequences with Linear Fractional Recurrence Relation. The American Mathematical Monthly, 68 (4), p. 353 - 355.

Piranian, G. and Thron, W. J. (1957). Convergence Properties of Sequences of Linear Fractional Transformations. The Michigan Mathematical Journal, 4 (2), p. 129

- 135.