The First Order Integer-Valued Autoregressive Models with The Two-Parameter Generalized Poisson-Lindley Distribution Based on The Negative Binomial Thinning Operator

Main Article Content

Suchiraporn Bunyaris
Jiraphan Suntornchost


In this study, we introduce the first order integer-valued autoregressive models for count data with the two-parameter generalized Poisson-Lindley distribution based on negative binomial thinning operator. Some important probabilistic and statistical properties such as generating function, expectation and variance are derived. Finally, parameter estimations are discussed.


Download data is not yet available.

Article Details

How to Cite
Bunyaris, S., & Suntornchost, J. (2021). The First Order Integer-Valued Autoregressive Models with The Two-Parameter Generalized Poisson-Lindley Distribution Based on The Negative Binomial Thinning Operator. วารสารคณิตศาสตร์, 66(704), 63 - 77. etrieved from
Research Article


Aghababaei, J., Jones, M. and Lai, C.D. (2012). First-Order Integer Valued AR Processes with Zero Inflated Poisson Innovations. Journal of Time Series Analysis, 33 (6), p. 954 - 963.

Alzaid, A. A., Abdulhamid, A. and Omair, A. (2014). Poisson Difference Integer Valued Autoregressive Model of Order One. Bulletin of The Malaysian Mathe-Matical Sciences Society, 37 (2), p. 465 - 485.

Alzaid, A. A. and Al-Osh, M. A. (1988). First-Order Integer-Valued Autoregressive (INAR(1)) Process: Distributional and Regression Properties. Statistica Neerlandica, 42, p. 53 - 61.

Alzaid, A. A. and Al-Osh, M. A. (1993). Some Autoregressive Moving Average Processes with Generalized Poisson Marginal Distributions. Annals of The Institute of Statistical Mathematics, 45, p. 223 - 232.

Bakouch, H. S., Mohammadpour, M. and Shirozhan, M. (2019). Poisson-Lindley INAR(1) Model with Applications. Brazilian Journal of Probability and Statistics, 32, p. 262 - 280.

Bakouch, H. S. Ristic, M. M. and Nastic, A. S. (2009). A New Geometric First Order Integer-Valued Autoregressive (NGINAR(1)) Process. Statistical Planning and Inference, 139, p. 2218 - 2226.

Bhati, D., Sastry, D. and Qadri, P. (2015). New Generalized Poisson-Lindley Distribution: Applications and Properties. Austrian Journal of Statistics, 44 (4), p. 35 - 51.

Ghitany, M. E., Al-Mutairi, D. K. and Nadarajah, S. (2008). Zero-Truncated Poisson–Lindley Distribution and Its Application. Mathematics and Computers in Simulation, 79, p. 279 - 287.

Mahmoudi, E., Rostami, A. and Roozegar, R. (2018). A New Integer-Valued AR(1) Process with Poisson-Lindley Innovation. Statistics Applications, ArXiv:1802.00994v1.

Mahmoudi, E. and Zakerzadeh, H. (2010). Generalized Poisson–Lindley Distribution. Communications in Statistics, 39 (10), p. 1785 - 1798.

Marcelo, B., Klaus, L. P. and Vasconcellos, V. (2016). A Poisson INAR(1) Process with A Seasonal Structure. Journal of Statistical Computation and Simulation, 86 (2), p. 373-387.

McKenzie, E. (1985). Some Simple Models for Discrete Variate Time Series. Journal of the American Water Resources Association, 21, p. 645 - 650.

Sankaran, M. (1970). The Discrete Poisson-Lindley Distribution. Biometrics, 26, p. 145-149.

Shanker, R. and Sharma, S. (2013). A Two-Parameter Lindley Distribution for Modeling Waiting and Survival Times Data. Applied Mathematics, 4, p. 363 - 368.

Steutel, F. W. and Van-Harn, K. (1979). Discrete Analogues of Self-Decomposability and Stability. The Annals of Probability, 7 (5), p. 893 - 899.

Xiang, H., Nannan, Y. and Mi, C. (2018). Risk Aggregation Based on The Poisson INAR(1) Process with Periodic Structure. Lithuanian Mathematical Journal, 58, p. 505 - 515.