Methodology of 3D underground object model for urban information modeling (UIM)
Main Article Content
Abstract
This research proposes a three-dimensional underground object modeling method for integration and development into an Urban Information Model (UIM) to support the operation of a Digital Twin smart city under construction, maintenance, and facility management. It expands on the Building Information Modeling (BIM) concept using Naresuan University as a study area, developing both graphic and non-graphic data, including pipes, sewage systems, wastewater treatment systems, septic tanks, electrical conduits, and underground communication cables. The developed underground object model can be seamlessly integrated with existing urban information models, both graphic and non-graphic, facilitating data accessibility, searchability, visualization, data editing, and cross-dimensional data linkage. This significantly enhances data organization, reduces redundancy, and minimizes errors. Although integration with other platforms may be complex and require high levels of skill and expertise, the process overall reduces task execution time by an average of 28.73% while increasing labor productivity by 0.34% per person per project compared to traditional methods.
Article Details
References
Department of Economic and Social Affairs of the United Nations. World Urbanization Prospects 2018. Available from: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf [Accessed 14th August 2023].
Kaewpoonsuk P. Development of Urban Information Modeling for Facility Management Based on Civil Engineering Works. [Ph.D. Dissertation in Civil Engineering]. Phitsanulok: The Graduate School, Naresuan University; 2023.
Hou W, Yang L, Deng D, Ye J, Clarke K, Yang Z, et al. Assessing quality of urban underground spaces by coupling 3D geological models: The case study of Foshan city, South China. Computers & Geosciences. 2016;89:1-11.
Marache A, Dubost J, Breysse D, Denis A, Dominique S. Understanding subsurface geological and geotechnical complexity at various scales in urban soils using a 3D model. Georisk. 2009;3(4):192-205.
Royse K, Rutter H, Entwisle D. Property attribution of 3D geological models in the Thames Gateway, London: new ways of visualising geoscientific information. Bulletin of Engineering Geology and the Environment. 2009;68:1-16.
Chapman D, Providakis S, Rogers C. BIM for the Underground – An enabler of trenchless construction. Underground Space. 2020;5(4):354-61.
Rienzo DF, Oreste P, Pelizza S. Subsurface geological-geotechnical modelling to sustain underground civil planning. Engineering geology. 2008;96(3-4):187-204.
Dong M, Neukum C, Hu H, Azzam R. Real 3D geotechnical modeling in engineering geology: a case study from the inner city of Aachen, Germany. Bulletin of Engineering Geology and the Environment. 2015;74:281-300.
Scholtenhuis OLL, Hartmann T, Dorée AG. 4D CAD based method for supporting coordination of urban subsurface utility projects. Automation in construction. 2016;62:66-77.
Providakis S, Rogers CD, Chapman DN. Predictions of settlement risk induced by tunnelling using BIM and 3D visualization tools. Tunnelling and underground space technology. 2019;92:103049.
Stefanova M, Natchev D. (2019). Digitization of the Construction Industry. Engineering Organizations in Support of European Initiatives, BIM Standardization and Accelerating BIM Adoption. In: Executive Board 2018 – 2021 of European Council of Civil Engineers: Proceeding of the World World Construction Forum 2019 - Buildings and Infrastructure Resilience, 8 - 11 April 2019, Ljubljana, Slovenia. Available from: https://uceb.eu/DATA/uceb/WCF_2019_public.pdf [Accessed 27th May 2023].
Kessler H, Turner KA, Culshaw GM, Royse RK. Unlocking the potential of digital 3D geological subsurface models for geotechnical engineers. In: European econference of the International Association for Engineering geology, Madrid, Spain, 15–20 Sept 2008. Available from: https://nora.nerc.ac.uk/id /eprint/3817/1/EUROENGEO_2008_Kessler_et_al.pdf [Accessed 28th May 2023].
Martin Th, Van S. Extending to geotechnical risk management. Georisk. 2009;3(3):174-183.
Qinglin Q, Fei T. Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access. 2018;6:3585-3593.
Tomko M, Winter S. Beyond digital twins – A commentary. Environment and Planning B: Urban Analytics and City Science. 2018;46(2):395-9.
Haag S, Anderl R. Digital twin – Proof of concept. Manufacturing Letters. 2018;15:64-6.
Rafael S, Charles E, Ghang L, Paul T. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers, 3rd Edition. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2018.
Bentley Advancing Infrastructure. H2PORTO Technological Platform for the Integrated Management of Porto’s Urban Water Cycle Porto, Porto, Portugal. Available from: https://fr.bentley.com/wp-content/uploads/CS-H2Porto-LTR-EN-LR.pdf [Accessed 7th June 2023].
ประกาศเรื่อง ยุทธศาสตร์ชาติ 20 ปี (พ.ศ.2561 ถึง 2580). ราชกิจจานุเบกษา, เล่ม 135 ตอนที่ 82 ก (ลงวันที่ 13 ตุลาคม 2561).
ประกาศเรื่อง แผนพัฒนาเศรษฐกิจและสังคมแห่งชาติ ฉบับที่ 12 (พ.ศ. 2560 – 2564). ราชกิจจานุเบกษา, เล่ม 133 ตอนที่ 115 ก (ลงวันที่ 30 ธันวาคม 2559).
สมลักษณ์ บุญณรงค์, นงลักษณ์ ปาสองห้อง และ เทพรัตน์ สะเภาทอง. การประยุกต์ใช้ระบบสารสนเทศภูมิศาสตร์เพื่อบริหารงานก่อสร้าง. วารสารวิชาการพระจอมเกล้าพระนครเหนือ. 2554; 21(1).
Metje N, Ahmad B. Causes, impacts and costs of strikes on buried utility assets. In: Matthew L.: Proceedings of the Institution of Civil Engineers. London: Thomas Telford Ltd; 2015;168(3):165-174.
Metje N, Atkins PR, Brennan MJ, Chapman DN, Lim HM, Machell J, et al. Mapping the Underworld – State-of-the-art review. Tunnelling and Underground Space Technology. 2007;22(5):568-86.
Meschke G. From advance exploration to real time steering of TBMs: A review on pertinent research in the Collaborative Research Center “Interaction Modeling in Mechanized Tunneling”. Underground Space. 2018;3(1):1-20.
Rogers CDF, Hao T, Costello SB, Burrow MPN, Metje N, Chapman DN, et al. Condition assessment of the surface and buried infrastructure – A proposal for integration. Tunnelling and Underground Space Technology. 2012;28:202-11.