Application of Image Processing for Cutting-Path Generation in Fish Deheading
Main Article Content
Abstract
The fish deheading process is a crucial step in the early stages of seafood processing. Traditionally, this process has relied heavily on skilled manual labor to maximize yield. While automated tools and machinery have been developed to assist with fish deheading, these machines still lack the flexibility to adapt their cutting patterns to accommodate the varying sizes and shapes of individual fish. Recent advancements in image processing techniques have led to their widespread adoption in various industries to enhance production efficiency, including quality control, inspection, and object recognition. This research aims to utilize image processing techniques to determine optimal fish-cutting paths to minimize flesh loss. The study involved three main steps: 1) data collection: Images of commonly used canned fish, mackerels, were captured from a top-down perspective under controlled lighting conditions with a reference scale, 2) image processing: Image processing algorithms were applied to extract quantitative information from the fish images, enabling the determination of cutting positions, and 3) analysis and path generation: the results of image processing and statistical analysis were combined to determine cutting positions and generate optimal cutting paths. After processing and analyzing image data of 50 fish samples within the length range of 150 to 250 millimeters, it was found that the average head-to-body length ratio was 0.23, with a standard deviation of 0.006. This ratio was used to establish the position and path for cutting the fish head following a straight-line approach. The cutting path accuracy was evaluated using another 50 sample fish images and the Fréchet distance metric. The average error between the cutting positions generated from image processing and the positions specified by experts was found to be 2.15 millimeters, with a standard deviation of 1.21 millimeters. This corresponds to a mere 1.01% of the body length, indicating a high degree of precision. To assess the practical effectiveness, 15 real fish samples were tested. The average weight loss after cutting the head was found to be 24.47% of the total body weight, with a standard deviation of 3.23%. This falls within the acceptable range for the seafood processing industry. The presented method for cutting fish heads using a straight line approach based on the head-to-body length ratio has proven to be accurate, and efficient, and results in minimal weight loss. The method's effectiveness was validated through both data analysis and real-world testing, making it a promising tool for the seafood processing industry.
Article Details
References
ศูนย์เทคโนโลยีสารสนเทศและการสื่อสาร สำนักงานปลัดกระทรวงพาณิชย์. สินค้าส่งออกสำคัญของไทย 2563. Available from: https://tradereport.moc.go.th/Report/Default.aspx?Report=MenucomTopNCountry&Option [Accessed 15th January 2024].
สำนักงานปลัดกระทรวงแรงงาน. สถานการณ์ด้านแรงงานรายปี 2563. Available from: https://bigdata.mol.go.th/lmis/upload/setup_portal_document/1/สถานการณ์ด้านแรงงานประจำปี -2563.pdf [Accessed 15th January 2024].
Sampels S. The effects of processing technologies and preparation on the final quality of fish products. Trends in Food Science & Technology. 2015;44(2): 131–146.
Nassiri SM, Tahavoor A, Jafari A. Fuzzy logic classification of mature tomatoes based on physical properties fusion. Information Processing in Agriculture. 2022;9(4): 547–555.
นุชรี ธรรมโชติ. พัฒนาระบบการประมวลผลภาพและโครงข่ายประสาทเทียมสำหรับกระบวนการคัดแยกขนาดและสายพันธุ์ของหมึกกล้วยแปรรูป.วิศวกรรมศาสตร์มหาบัณฑิต: มหาวิทยาลัยสงขลานครินทร์; 2014.
วรรณรีย์ วงศ์ไตรรัตน์, ถนอมศักดิ์ โสภณ, ประเสริฐ นามเวช, ศศิพันธ์ วงศ์สุทธาวาส. การคัดแยกผลผลิตทางการเกษตรโดยใช้การประมวลผลภาพ. การประชุมวิชาการงานวิจัยและพัฒนาเชิงประยุกต์ ครั้งที่ 7. จังหวัดตรัง, ประเทศไทย; 2558.
Fernandes AFA, Dórea JRR, Rosa GJ de M. Image analysis and computer vision applications in animal sciences: an overview. Frontiers in Veterinary Science. 2020;7: 551269.
Sture Ø, Øye ER, Skavhaug A, Mathiassen JR. A 3D machine vision system for quality grading of Atlantic salmon. Computers and Electronics in Agriculture. 2016;123: 142–148.
Thanasarn N, Chaiprapat S, Waiyakan K, Thongkaew K. Automated discrimination of deveined shrimps based on grayscale image parameters. Journal of Food Process Engineering. 2019;42(4): e13041.
Uchida S. Image processing and recognition for biological images. Development, growth & differentiation. 2013;55(4): 523–549.
Bajaj L, Gupta K, Hasija Y. Image processing in biomedical science. Advances in soft computing and machine learning in image processing. 2018; 185–211.
Ijemaru G, Nwajana A, Oleka E, Otuka R, Ihianle I, Ebenuwa S, et al. Image processing system using MATLAB-based analytics. Bulletin of Electrical Engineering and Informatics. 2021;10: 2566–2577.
Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, et al. The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development. International journal of computer assisted radiology and surgery. 2013;8: 607–620.
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular reproduction and development. 2015;82(7–8): 518–529.
Gracia L, Perez-Vidal C, Gracia C. Computer vision applied to flower, fruit and vegetable processing. International Journal of Computer and Information Engineering. 2011;5(6): 616–622.
Wadie IHC, Khodabandehloo K. Path generation for robotic cutting of carcasses. Computers and Electronics in Agriculture. 1995;12(1): 65–80.
Rico-Díaz ÁJ, Rabuñal JR, Gestal M, Mures OA, Puertas J. An application of fish detection based on eye search with artificial vision and artificial neural networks. Water. 2020;12(11): 3013.
Fernandes AF, Turra EM, de Alvarenga ER, Passafaro TL, Lopes FB, Alves GF, et al. Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Computers and electronics in agriculture. 2020;170: 105274.
White DJ, Svellingen C, Strachan NJ. Automated measurement of species and length of fish by computer vision. Fisheries Research. 2006;80(2–3): 203–210.
Sung HJ, Park MK, Choi JW. Automatic grader for flatfishes using machine vision. International Journal of Control, Automation and Systems. 2020;18: 3073–3082.
Azarmdel H, Mohtasebi SS, Jafari A, Rosado Muñoz A. Developing an orientation and cutting point determination algorithm for a trout fish processing system using machine vision. Computers and Electronics in Agriculture. 2019;162: 613–629.
Bratt L. Technical guide to fish canning. FAO GLOBEFISH Research Programme. 2013;111: 1–69.
Rawat S, Benakappa S, Kumar J, Naik K, Pandey G, Pema C. Identification of fish stocks based on truss morphometric: A review. Journal of Fisheries and Life Sciences. 2017;2(1): 9–14.
Mojekwu T, Anumudu C. Advanced techniques for morphometric analysis in fish. Journal of Aquaculture Research & Development. 2015;6(8): 1–6.
Petrellis N. Measurement of fish morphological features through image processing and deep learning techniques. Applied Sciences. 2021;11(10): 4416.
Rani N. Image processing techniques: a review. Journal on Today’s Ideas-Tomorrow’s Technolosgies. 2017;5(1): 40–49.
Oliveira NF, Torati LS, Borin-Carvalho LA, de Lima LK, Puvanendran V, Demiciano TH, et al. Fish Size Correlates to Size and Morphology of Intermuscular Bones in Tambaqui Colossoma macropomum as Shown by Dissection and X-ray Imaging Methods. Fishes. 2023;8(4): 180.
McKinney W. Python for data analysis: O’Reilly Media, Inc.; 2022.
Jekel CF, Venter G, Venter MP, Stander N, Haftka RT. Similarity measures for identifying material parameters from hysteresis loops using inverse analysis. International Journal of Material Forming. 2019;12: 355–378.
Wylie T, Zhu B. Following a curve with the discrete Fréchet distance. Theoretical Computer Science. 2014;556: 34–44.
Su H, Liu S, Zheng B, Zhou X, Zheng K. A survey of trajectory distance measures and performance evaluation. The VLDB Journal. 2020;29(1): 3–32.
Hou B, Zhang C, Yang S. Computer vision tool-setting system of numerical control machine tool. Sensors. 2020;20(18): 5302.