Application of the D-optimal design of experimental for determining parameters in compression molding of banana leaf cup containers
Main Article Content
Abstract
This research aims the optimal forming parameters for producing cup-shaped containers from banana leaves using the thermoforming process. The study focuses on three main conditions: the number of banana leaf layers, forming temperature, and forming time. A D-optimal experimental design was applied to reduce the number of experimental runs while ensuring analytical reliability. The effects of these parameters on the mechanical strength and water absorption of the containers were analyzed. The experimental results indicate that the optimal forming parameters comprises four layers of banana leaves, a forming temperature of 140 °C, and a forming time of 2 minutes. Under this setting, the containers achieved an average compression strength of 9.12 kN and a water absorption rate of 15.02%. Compared with commercial molded pulp containers, which showed an average strength of 13.61 kN and water absorption of 16.63%, the banana leaf containers exhibited statistically significant differences as confirmed by a two-sample t-test at the 95% confidence level. Although the banana leaf containers showed lower compression strength, the values remained within the requirements of ISO 3037:2022 (minimum 8 kN), and their water absorption met the criteria of ISO 535:2014 (not exceeding 17%). These findings support the suitability of banana leaf containers for practical applications and highlight their potential as biodegradable and environmentally sustainable packaging alternatives.
Article Details
References
ประสิทธิ์ เวชบรรยงรัตน์. ออกแบบบรรจุภัณฑ์รักษ์โลก. Journal of Information Technology and Innovation. 2018;17(1): 37–48.
Arumugam S, Pugazhenthi G, Selvaraj S. Investigations on mechanical properties of processed banana leaves for sustainable food packaging applications. Biomass Conversion and Biorefinery. 2024;14(18): 22527-22537.
Mvuma AC, Alexander AN. The emerging use of palm and banana leaves in food packaging. International Journal of Multidisciplinary Research and Development. 2023;10(12): 81–3.
นธีทร ม่วงเอี่ยม, พัฒนพงษ์ เพชรโต, พิษณุ ชาวพิจิตร, ปิยณัฐ ขุนทอง. การศึกษาลักษณะทางกายภาพของภาชนะจากธรรมชาติ. วารสารวิชาการเทคโนโลยีอุตสาหกรรมและวิศวกรรม มหาวิทยาลัยราชภัฏพิบูลสงคราม. 2564;3(1): 1–9.
Luthfi N, Wang X, Kito K. Effect of drying temperature on the physical properties of binderless fiberboard from bagasse: study of water absorption. Science & Technology Asia. 2021;26(3): 30–8.
Adekunle K, Åkesson D, Skrifvars M. Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural‐fiber reinforcement. Journal of Applied Polymer Science. 2010;116(3): 1759 -1765.
Alibekov RS, Urazbayeva KU, Azimov AM, Rozman AS, Hashim N, Maringgal B. Advances in biodegradable food packaging using wheat-based materials: fabrications and innovations, applications, potentials, and challenges. Foods. 2024;13(18): 2964.
Begum HA, Tanni TR, Shahid MA. Analysis of water absorption of different natural fibers. Journal of Textile Science and Technology. 2021;7(4): 152-160.
Klein P, Kennedy M. Fundamentals of plastics thermoforming [Internet]. Cham: Springer Nature Switzerland; 2025. Synthesis Lectures on Materials and Optics). Available from: https:// link.springer.com/10.1007/978-3-031-63528-1.
Bootklad M, Kaewtatip K. Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydrate Polymers. 2013;97(2): 315-320.
Yuvaraj G, Ramesh M. Mechanical, wear, and hydrophobic properties of silane-treated Corn husk fiber and betel nut epoxy composites. Biomass Conversion and Biorefinery. 2023;13(16): 15227-15234.
Henrion D, Lasserre JB. Approximate D-optimal design and equilibrium measure. Comptes Rendus. Mathématique. 2025;363(G8): 739-756.
Luesak P, Pitakaso R, Sethanan K, Golinska-Dawson P, Srichok T, Chokanat P. Multi-objective modified differential evolution methods for the optimal parameters of aluminum friction stir welding processes of AA6061-T6 and AA5083-H112. Metals. 2023;13(2): 252.
Huang Y, Li K, Mandal A, Yang J. ForLion: A new algorithm for D-optimal designs under general parametric statistical models with mixed factors. Statistics and Computing. 2024;34(5): 157.
Kang L, Deng X, Jin R. Bayesian D-optimal design of experiments with quantitative and qualitative Responses. Available from: https://arxiv.org/abs/ 2304.08701 [Accessed 28th July 2025].
Sriamornsak P, Sunthornvarabhas J, Nunthanid J. Design of biodegradable food packaging using heat-molded natural materials. Kasetsart Journal: Natural Science. 2017;51(3): 499–506.
International Organization for Standardization. Corrugated Fibreboard—Determination of Edgewise Crush Resistance (Non‑Waxed Edge Method) (ISO Standard No. 3037:2022). Geneva, Switzerland: International Organization for Standardization; 2022. Report No.: ISO 3037:2022. Available from: https://www.iso.org/ standard/80310.html [Accessed 7th May 2025].
International Organization for Standardization. Paper and Board — Determination of Water Absorptiveness — Cobb Method (ISO Standard No. 535:2014). Geneva, Switzerland: International Organization for Standardization; 2014. Report No.: ISO 535:2014. Available from: https://www.iso.org/standard/60490.html [Accessed 7th May 2025].