การเปรียบเทียบวิธีการปรับแก้ความคลาดเคลื่อนของปริมาณฝนจากแบบจำลองภูมิอากาศโลกเพื่อประเมินปริมาณฝนภายใต้การเปลี่ยนแปลงสภาพภูมิอากาศ CMIP6

Main Article Content

รวีพร นฤดีศรีอุทัย
ชูพันธุ์ ชมภูจันทร์
เกศวรา สิทธิโชค

บทคัดย่อ

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อศึกษาและเปรียบเทียบผลลัพธ์ที่ได้จากวิธีการปรับแก้ค่าทางสถิติของปริมาณฝนที่ได้จากแบบจำลองภูมิอากาศโลก 11 แบบจำลอง จำนวน 3 วิธี ได้แก่ Linear Scaling (LS), Local Intensity Scaling (LOCI) และ Distribution mapping (DM) โดยการประยุกต์ใช้แบบจำลอง CMhyd และนำผลที่ได้ไปประเมินการเปลี่ยนแปลงของปริมาณฝนภายใต้การเปลี่ยนแปลงสภาพภูมิอากาศ CMIP6 (SSP5-8.5) ในพื้นที่ภาคใต้ของประเทศไทย จากสถานีตรวจวัดฝนทั้งสิ้นจำนวน 15 สถานีในช่วงปี ค.ศ. 1980 – 2014 ผลการศึกษาแสดงให้เห็นว่าเมื่อพิจารณาผลลัพธ์จากทุกแบบจำลองภูมิอากาศโลกร่วมกัน วิธี LS มีค่าสถิติวิเคราะห์
ดีที่สุดเหมาะสมในการนำมาคาดการณ์ปริมาณฝนในอนาคต นอกจากนั้นจากการวิเคราะห์แนวโน้มปริมาณฝนภายใต้การเปลี่ยนแปลงสภาพภูมิอากาศ ด้วยวิธี Mann-Kendall trend test (MK) และ Sen’s slope (SS) ที่ระดับนัยสำคัญ 0.05 พบว่าพื้นที่ภาคใต้ส่วนใหญ่มีแนวโน้มของปริมาณฝนรายปีเพิ่มขึ้นอย่างมีนัยสำคัญจำนวน 8 สถานี และปริมาณฝนตามฤดูกาลเพิ่มขึ้นอย่างมีนัยสำคัญจำนวน 7 สถานี ทั้งในฤดูฝนและฤดูร้อน และเมื่อประเมินปริมาณฝนเฉลี่ยของพื้นที่ภาคใต้ภายใต้สถานการณ์ SSP5-8.5 โดยแบ่งเป็น 3 ช่วงเวลา ได้แก่ ช่วงปี ค.ศ. 2015-2039 (Near-future), 2040-2069 (Mid-future) และ 2070-2100 (Far-future) พบว่าปริมาณฝนทั้ง 3 ช่วงเวลามีแนวโน้มที่เพิ่มสูงขึ้นเท่ากับร้อยละ 0.60, 5.87 และ 8.16 ตามลำดับ

Article Details

ประเภทบทความ
บทความวิจัย (Research Article)

เอกสารอ้างอิง

McFarlane D, Stone R, Martens S, Thomas J, Silberstein R, Ali R, et al. Climate change impacts on water yields and demands in south-western Australia. Journal of Hydrology. 2012;475: 488-498. Available from: https://www.sciencedirect.com/science/article/pii/S0022169412004271 [Accessed 4th June 2024].

Edwards PN. History of climate modeling. WIREs Climate Change. 2010;2(1): 128-139. Available from: DOI: 10.1002/wcc.95 [Accessed 7th June 2024].

เทพไท ไชยทอง, สุทธิศักดิ์ ศรลัมพ์. การปรับความคลาดเคลื่อนของปริมาณน้ำฝนจากแบบจำลองภูมิอากาศภายใต้แบบจำลองการปล่อยก๊าซเรือนกระจก A2 และ B2. The Journal of King Mongkut's University of Technology North Bangkok. 2016: 153-164. Available from: DOI: 10.14416/j.kmutnb.2015.08.002 [Accessed 4th June 2024].

Crochemore L, Ramos M-H, Pappenberger F. Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts. Hydrology and Earth System Sciences. 2016; 20(9): 3601-3618. Available from: DOI: 10.5194/hess-20-3601-2016 [Accessed 4th June 2024].

วินัย เชาวน์วิวัฒน์, กนกศรี ศรินนภากร, สมพินิจ เหมืองทอง. การประเมินผลกระทบของการเปลี่ยนแปลงสภาพภูมิอากาศต่อค่าดัชนีฝนสุดขั้วของประเทศไทยด้วยค่าความเป็นไปได้. การประชุมวิชาการวิศวกรรมโยธาแห่งชาติ. 2564; (26): 1-13.

Zhang B, Shrestha N, Daggupati P, Rudra R, Shukla R, Kaur B, et al. Quantifying the Impacts of Climate Change on Streamflow Dynamics of Two Major Rivers of the Northern Lake Erie Basin in Canada. Sustainability. 2018; 10(8). Available from: DOI: 10.3390/su10082897 [Accessed 4th June 2024].

Siabi E, Awafo E, Kabo-bah AT, Derkyi N, Akpoti K, Mortey E, et al. Assessment of Shared Socioeconomic Pathway (Ssp) Climate Scenarios and its Impacts on the Greater Accra Region. SSRN Electronic Journal. 2022. Available from: DOI: 10.2139/ssrn.4225254 [Accessed 4th June 2024].

Senganatham N, Kaewrueng S, Miphokasap P, Tasaduak S, Rattanapichai W. Flood Risk Assessment under Climate Change: Study Case Khongsedon Floodplain, Salavan Province, Lao PDR. The Journal of King Mongkut's University of Technology North Bangkok. 2023; 33(3). Available from: DOI: 10.14416/j.kmutnb.2023.04.001 [Accessed 4th June 2024].

กิตติเวช ขันติยวิชัย. โครงการการเชื่อมโยงการเปลี่ยนแปลงสภาพภูมิอากาศ การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินและเหตุการณ์น้ำท่วม ในเขตพื้นที่ลุ่มน้ำพองตอนล่าง: ผลกระทบและความเสียหาย (รายงานวิจัยฉบับสมบูรณ์); 2563.

Sittichok K. Future rainfall characteristics under AR6 climate change scenarios, case study of Pasak River basin, Thailand. 21st International Scientific Conference Engineering for Rural Development. Jelgava; 2022. p. 70-79.

Chhin R, Yoden S. Ranking CMIP5 GCMs for Model Ensemble Selection on Regional Scale: Case Study of the Indochina Region. Journal of Geophysical Research: Atmospheres. 2018; 123(17): 8949-8974. Available from: DOI: 10.1029/2017jd028026 [Accessed 4th June 2024].

Kamworapan S, Surussavadee C. Evaluation of CMIP5 Global Climate Models for Simulating Climatological Temperature and Precipitation for Southeast Asia. Advances in Meteorology. 2019; 2019: 1-18. Available from: DOI: 10.1155/2019/1067365 [Accessed 4th June 2024].

Mohobane T, Mantel S, Hughes DA. An assessment of the skill of downscaled GCM outputs in simulating historical patterns of rainfall variability in South Africa. Hydrology Research. 2014; 45(1): 134-147. Available from: DOI: 10.2166/nh.2013.027 [Accessed 4th June 2024].

Nagesh Kumar D, Srinivasa Raju K. Ranking general circulation models for India using TOPSIS. Journal of Water and Climate Change. 2015; 6(2): 288-299. Available from: DOI: 10.2166/wcc.2014.074 [Accessed 4th June 2024].

Raju KS, Nagesh KD. Ranking of global climate models for India using multicriterion analysis. Climate Research. 2014; 60(2): 103-117. Available from: DOI:10.3354/cr01222 [Accessed 4th June 2024].

Islam MN, Rafiuddin M, Ahmed AU, Kolli RK. Calibration of PRECIS in employing future scenarios in Bangladesh. International Journal of Climatology. 2008; 28(5): 617-628.

Sheng Y, Chun YW. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. WARM Journal. 2004; 18(3): 201-218.

Kahya E, Kalaycı S. Trend analysis of streamflow in Turkey. Journal of Hydrology. 2004; 289(1-4): 128-144. Available from: DOI: 10.1016/j.jhydrol.2003.11.006 [Accessed 4th June 2024].

Kendall MG. Rank Correlation Methods. 4th Edition, Charles Griffin, London. 1975.

พวงรัตน์ ทวีรัตน์. วิธีการวิจัยทางพฤติกรรมศาสตร์และสังคมศาสตร์. สำนักพิมพ์กรุงเทพฯ มหาวิทยาลัยศรีนครินทร วิโรฒ ประสานมิตร; 2540.

Humphries UW, Waqas M, Hlaing PT, Dechpichai P, Wangwongchai A. Assessment of CMIP6 GCMs for selecting a suitable climate model for precipitation projections in Southern Thailand. Results in Engineering. 2024; 23. Available from: DOI: 10.1016/j.rineng.2024.102417 [Accessed 4th June 2024].