Plasma – Assisted Gasification of Biomass for Syngas Production
Main Article Content
Abstract
The objective of this research was to examine energy production for high-moisture biomass with plasma gasification system. It was found that this system could reduce the limit of biomass in terms of moisture content. The high moisture in the biomass caused a decrease in gasifier temperature in the reactor chamber. However, the derived H2 in syngas was increased, obtaining high calorific value (> 5 MJ/Nm3), which is high enough for use in consecutive applications. The efficiency of plasma gasification system operated with high moisture biomass was found to be more or less the same with that of conventional gasification operated with low moisture biomass. When the drying energy required to achieved 16% w.b. is taken into account for conventional gasification system, the efficiency of the plasma gasification system is 15% higher than convent gasification, indicating that the plasma gasification system can be operated with high-moisture biomass efficiently and reduces the process steps and energy for biomass preparation.
Article Details
วารสารวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ (FEAT Journal) มีกําหนดออกเป็นราย 6 เดือน คือ มกราคม - มิถุนายน และกรกฎาคม - ธันวาคม ของทุกปี จัดพิมพ์โดยกลุ่มวิจัยวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ คณะวิศวกรรมศาสตร์มหาวิทยาลัยขอนแก่น เพื่อเป็นการส่งเสริมและเผยแพร่ความรู้ ผลงานทางวิชาการ งานวิจัยทางด้านวิศวกรรมศาสตร์และเทคโนโลยีพร้อมทั้งยังจัดส่ง เผยแพร่ตามสถาบันการศึกษาต่างๆ ในประเทศด้วย บทความที่ตีพิมพ์ลงในวารสาร FEAT ทุกบทความนั้นจะต้องผ่านความเห็นชอบจากผู้ทรงคุณวุฒิในสาขาที่เกี่ยวข้องและสงวนสิทธิ์ ตาม พ.ร.บ. ลิขสิทธิ์ พ.ศ. 2535
References
[2] Han, J., and Kim H. (2008). The reduction and control technology of tar during biomass gasification/pyrolysis: An overview. Renewable and Sustainable Energy Reviews. 12(2): 397-416.
[3] Arjharn, W., Hinsui, T., Liplap, P., and G. S. V. Raghavan. (2012). Evaluation of Energy Production from Different Biomass Feedstock Using a Pilot Scale Downdraft Gasifier. Biobase Materials and Bioenergy. 6, 1-11.
[4] Rutberg, Ph.G., Bratsev, A. N., Kuznetsov, V. A., Popov, V. E., Ufimtsev, A. A., Shtengel, S. V. (2011). On efficiency of plasma gasification of wood residues. Biomass and Bioenergy. 35(1): 495-504.
[5] Hlina, M., Hrabovsky, M., Kopecky, V., Konrad, M. and Kavka, T. (2006). Plasma gasification of wood and production of gas with low content of tar. Czechoslovak Journal of Physics. 56: B1179-B1184.
[6] Zhang, L., Xu, C. C., Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management. 51(5): 969-982.
[7] Bhattacharya, S. C., Hla, S. S. and Pham, H. L. (2001). A study on a multi-stage hybrid gasifier-engine system. Biomass and Bioenergy. 21(6): 445-460.
[8] Janajreh, I., Raza, S. S., Valmundsson, A. S. (2013). Plasma gasification process: Modeling, simulation and comparison with conventional air gasification. Energy Conversion and Management. 65(0):801-809.
[9] Nakorn Tippayawong. (2010). Biomass conversion technology.Technology Promotion Association (Thailand-Japan), Bangkok, Thailand. 256 pages. (In Thai).
[10] Chotchutima, S., Tudsri, S., Kangvansaichol K. and Sripichitt, P. (2016). Effects of sulfur and phosphorus application on the growth, biomass yield and fuel properties of leucaena (Leucaena leucocephala (Lam.) deWit.) as bioenergy crop on sandy infertile soil. Agriculture and Natural Resources. 50: 54-59.
[11] Rengsirikul, K., Kanjanakuha, A., Ishii, Y., et al. (2011). Potential forage and biomass production of newly introduced varieties of Leucaena (Leucaena leucocephala (Lam.) de Wit.) in Thailand. Grassl. Sci. 57: 94-100.
[12] Quaak, P., Knoef, H. and Stassen, H. (1999). Energy from biomass: A review of combustion and gasification technology. World bank techpaper. no.422.
[13] Reed, T. B., and Das, A. (1988). Handbook of Biomass Downdraft Gasifier Engine System, Solar Energy Research Institute, Golden, Colorado.
[14] Rajvanshi, A. K. (1986). Biomass gasification, In: Goswami, Y.D. (Ed.). Alternative Energy in Agriculture, CRC Press. 83-102.
[15] Kirubakaran, V., Sivaramakrishnan, V., Nalini, R., Sekar, T., Premalatha, M., Subramanian, P. (2009). A review on gasification of biomass. Renewable and Sustainable Energy/Review, 13(1):179-186.
[16] Zainal, Z. A., Rifau, A., Quadir, G. A. and Seetharamu, K. N. (2002). Experimental investigation of a downdraft biomass gasifier. Biomass and Bioenergy. 23(4): 283-289.
[17] Sharma, A. K. (2008). Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier. Energy Conversion and Management. 49(4): 832-842.
[18] Kaupp, A. and Goss, J. R. (1981). State of art for small scale (50 kW) to gas producer-engine systems. Final Report to the USDA USFS on Contract No. 53-319R-0-141, University of California, Davis.
[19] Devi, L., Ptasinski, K.J., Janssen, F.J.J.G. (2003). A review of the primary measures for tar elimination in biomass gasification processes. Biomass and Bioenergy. 24(2):125-140.
[20] Phuphuakrat, T.; Nipattummakul, N.; Namioka, T.; Kerdsuwan, S.; Yoshikawa, K., (2010). Characterization of tar content in the syngas produced in a downdraft type fixed bed gasification system from dried sewage. Fuel. 89:2278-2284.
[21] Weerachai Arjharn (2007). Study of a small-scale biomass power plant for rural communities (phase II). Final Report.
National research council of thailand. (In Thai).