Effect of Inorganic Salts on Profenofos Pesticide Degradation of Immobilized Pseudomonas plecoglossicida strain PF1 and Acinetobacter baylyi strain GFJ2
Main Article Content
Abstract
Profenofos commonly used in organophosphate pesticides has been detected and contaminated in environment. The in situ biodegradation of profenofos required suitable environmental conditions to support microorganisms. The cell immobilization technique has been initiated to improve biodegradation. The study aimed to investigate on the influence of environmental conditions (inorganic salts) on profenofos biodegradation by immobilized microbial cells. Pseudomonas plecoglossicida strain PF1 (PF1) and Acinetobacter baylyi strain GFJ2 (GFJ2) in calcium alginate immobilization matrices were selected. The inorganic salts including NaCl, MgSO4, and CaCO3 with the concentrations of 0 to 1,000 mg/L were applied. The result showed that profenofos biodegradation by the immobilized PF1 and GFJ2 (50-90%) was better than that by the free cells (40-70%). Profenofos biodegradation by immobilized PF1 and GFJ2 under presence of inorganic salts obviously decreased.
Article Details
วารสารวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ (FEAT Journal) มีกําหนดออกเป็นราย 6 เดือน คือ มกราคม - มิถุนายน และกรกฎาคม - ธันวาคม ของทุกปี จัดพิมพ์โดยกลุ่มวิจัยวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ คณะวิศวกรรมศาสตร์มหาวิทยาลัยขอนแก่น เพื่อเป็นการส่งเสริมและเผยแพร่ความรู้ ผลงานทางวิชาการ งานวิจัยทางด้านวิศวกรรมศาสตร์และเทคโนโลยีพร้อมทั้งยังจัดส่ง เผยแพร่ตามสถาบันการศึกษาต่างๆ ในประเทศด้วย บทความที่ตีพิมพ์ลงในวารสาร FEAT ทุกบทความนั้นจะต้องผ่านความเห็นชอบจากผู้ทรงคุณวุฒิในสาขาที่เกี่ยวข้องและสงวนสิทธิ์ ตาม พ.ร.บ. ลิขสิทธิ์ พ.ศ. 2535
References
[2] Harnpicharnchai K., Chaiear N., & Charerntanyarak L. (2013). Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam subdistrict, Khon Kaen, Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 44(6), 1088-1097.
[3] Sapbamrer R., & Hongsibsong S. (2014). Organophosphorus pesticide residues in vegetables from farms, markets, and a supermarket around Kwan Phayao Lake of Northern Thailand. Archives of Environmental Contamination and Toxicology, 67(1), 60-67.
[4] Santos da Silva S., Chiavone-Filho O., de Barros Neto E. L., Foletto E. L., & Mota A. L. N. (2013). Effect of Inorganic Salt Mixtures on Phenol Mineralization by Photo-Fenton-Analysis via an Experimental Design. Water, Air, & Soil Pollution, 225(1), 1-10.
[5] Karpouzas D. G., & Walker A. (2000). Factors influencing the ability of Pseudomonas putida strains epI and II to degrade the organophosphate ethoprophos. Journal of Applied Microbiology, 89(1), 40-48.
[6] Siripattanakul-Ratpukdi S., Vangnai A. S., Sangthean P., & Singkibut S. (2014). Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil. Environmental Science and Pollution Research, 22(1), 320-328.
[7] Siripattanakul S., & Khan E. (2010). undamentals and applications of entrapped cell bioaugmentation for contaminant removal Emerging Environmental Technologies (Vol. 2, pp. 147-169): Springer Netherlands.
[8] Hongsawat P., & Vangnai A. S. (2011). Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. Journal of Hazardous Materials, 186(2–3), 1300-
1307.
[9] Chandrasekar N., Selvakumar S., Srinivas Y., John Wilson J. S., Simon Pete, T., & Magesh N. S. (2014). Hydrogeochemical assessment of groundwater quality along the coastal aquifers of southern Tamil Nadu, India. Environmental Earth Sciences, 71(11), 4739-4750.
[10] Chung S. Y., Venkatramanan S., Kim T. H., Kim D. S., & Ramkumar T. (2015). Influence of hydrogeochemical processes and assessment of suitability for groundwater
uses in Busan City, Korea. Environment, Development and Sustainability, 17(3), 423-441.
[11] Singaraja C., Chidambaram S., Anandhan P., Prasanna M. V., Thivya C., & Thilagavathi R. (2015). A study on the status of saltwater intrusion in the coastal hard rock aquifer of South India. Environment, Development and Sustainability, 17(3), 443-475.
[12] Ebrahimi S., Nguyen T. H., & Roberts D. J. (2015). Effect of temperature & salt concentration on salt tolerant nitrate-perchlorate reducing bacteria: Nitrate degradation kinetics. Water Research, 83, 345-353.