Reuse of aluminum electrodes in electrocoagulation process for indigo dyeing wastewater treatment
Main Article Content
Abstract
This research aimed to study the reuse of aluminum electrode in electrocoagulation process for wastewater treatment from indigo dyeing process. The experiments were conducted both in laboratory scale and small industry. An aluminum sheet thickness of 0.5 mm was used as electrodes in electrocoagulation process. Moreover, the cost of wastewater treatment was also studied. The conditions for electrocoagulation process were set as follow; electrolysis time of 60 minutes, current density of 300 A/m2, and initial pH of 11 or without adjustment when the experiments were conducted in prototype reactor. At the laboratory scale experiments, it was found that 3-times reuse could maintain the rectangular shape of anode electrodes as the shape of cathode. The prototype reactor for wastewater treatment from real indigo dyeing in a small industry, the efficiency of the 9-liters prototype reactor presented COD and color removal of 76.75% and 76.39% respectively. For 3-times reuse of anode electrode, it was costly 1,426.22 bath per cubic meter. Moreover, if the reuse of electrode was repeated until the anode was dissolved completely, the cost of treatment was about 169.59 bath per cubic meter.
Article Details
วารสารวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ (FEAT Journal) มีกําหนดออกเป็นราย 6 เดือน คือ มกราคม - มิถุนายน และกรกฎาคม - ธันวาคม ของทุกปี จัดพิมพ์โดยกลุ่มวิจัยวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ คณะวิศวกรรมศาสตร์มหาวิทยาลัยขอนแก่น เพื่อเป็นการส่งเสริมและเผยแพร่ความรู้ ผลงานทางวิชาการ งานวิจัยทางด้านวิศวกรรมศาสตร์และเทคโนโลยีพร้อมทั้งยังจัดส่ง เผยแพร่ตามสถาบันการศึกษาต่างๆ ในประเทศด้วย บทความที่ตีพิมพ์ลงในวารสาร FEAT ทุกบทความนั้นจะต้องผ่านความเห็นชอบจากผู้ทรงคุณวุฒิในสาขาที่เกี่ยวข้องและสงวนสิทธิ์ ตาม พ.ร.บ. ลิขสิทธิ์ พ.ศ. 2535
References
Erkan G, Sengül K, Kaya S. Dyeing of white and indigo dyed cotton fabrics with Mimosa tenuiflora extract. Journal of Saudi Chemical Society. 2014; 18(2): 139–48.
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation. 2019; 3(2): 275–90.
Secula MS, Crežescu I, Petrescu S. An experimental study of indigo carmine removal from aqueous solution by electrocoagulation. Desalination. 2011; 277(1–3): 227–35.
Albuquerque LF, Salgueiro AA, Melo JLDS, Chiavone-Filho O. Coagulation of indigo blue present in dyeing wastewater using a residual bittern. Separation and Purification Technology. 2013; 104: 246–9.
Hu Y, Chen X, Liu Z, Wang G, Liao S. Activated carbon doped with biogenic manganese oxides for the removal of indigo carmine. Journal of Environmental Management. 2016; 166: 512–8.
Zhu X, Bao L, Wei Y, Ma J, Kong Y. Removal of toxic indigo blue with integrated biomaterials of sodium carboxymethyl cellulose and chitosan. International Journal of Biological Macromolecules. 2016; 91: 409–15.
Naciri N, et al. Effective photocatalytic decolorization of indigo carmine dye in Moroccan natural phosphate-TiO2 aqueous suspensions. Opt Mater (Amst) 2016; 52: 38–43.
Emamjomeh MM, Sivakumar M. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management. 2009; 90(5): 1663–79.
Anfruns-Estrada E, Bruguera-Casamada C, Salvadó H, Brillas E, Sirés I, Araujo RM. Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments. Water Research. 2017; 126: 450–9.
Elazzouzi M, Haboubi K, Elyoubi MS. Electrocoagulation flocculation as a low-cost process for pollutants removal from urban wastewater. Chemical Engineering Research and Design. 2017; 117: 614–26.
Elazzouzi M, El Kasmi A, Haboubi K, Elyoubi MS. A novel electrocoagulation process using insulated edges of Al electrodes for enhancement of urban wastewater treatment: Techno-economic study. Process Saf Environ Prot. 2018; 116: 506–15.
Deghles A, Kurt U. Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chemical Engineering and Processing: Process Intensification. 2016; 104: 43–50.
Moradi M, Moussavi G. Enhanced treatment of tannery wastewater using the electrocoagulation process combined with UVC/VUV photoreactor: Parametric and mechanistic evaluation. Chemical Engineering Journal. 2019; 358 (April 2018): 1038–46.
Camcioglu S, Ozyurt B, Hapoglu H. Effect of process control on optimization of pulp and paper mill wastewater treatment by electrocoagulation. Process Safety and Environmental Protection 2017; 111: 300–19.
Khorram AG, Fallah N. Treatment of textile dyeing factory wastewater by electrocoagulation with low sludge settling time: Optimization of operating parameters by RSM. Journal of Environmental Chemical Engineering. 2018; 6(1): 635–42.
Hendaoui K, Ayari F, Rayana I Ben, Amar R Ben, Darragi F, Trabelsi-Ayadi M. Real indigo dyeing effluent decontamination using continuous electrocoagulation cell: Study and optimization using Response Surface Methodology. Process Safety and Environmental Protection. 2018; 116: 578–89.
Zazou H, Afanga H, Akhouairi S, Ouchtak H, Addi AA, Akbour RA, et al. Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. Journal of Water Process Engineering. 2019; 28(February): 214–21.
Bilinska L, Blus K, Gmurek M, Ledakowicz S. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chemical Engineering Journal. 2019; 358(October 2018): 992–1001.