The Study of Temperature Distribution in Steel Rods Welded by Friction Welding Using Finite Element Method
Main Article Content
Abstract
This research studies the temperature distribution around the weld zone of friction-welded steel with a diameter of 15 mm and a length of 100 mm. The temperature was measured at distances of 5 mm and 10 mm from the weld zone and compared with a finite element method based on 2D axisymmetric triangular and quadrilateral thin shell elements. The software used is Abaqus 16.4. The study was conducted under two conditions with five related variables: friction pressure (bar), friction time (sec), upset pressure (bar), upset time (sec), and rotational speed (rpm). The differing variable is the friction pressure, which is 20 bar in Condition 1 and 30 bar in Condition 2. The experimental results showed that the error between the experimental data and the model for Condition 1 was 0.79% at a 5 mm and 3.58% at a 10 mm. For Condition 2, the error was 3.4% at a 5 mm and 5% at a 10 mm. The phenomena is similar for both finite element method and experiment. This implies that the finite element method model can be used predict the temperature distribution in welding process.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
วารสารวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ (FEAT Journal) มีกําหนดออกเป็นราย 6 เดือน คือ มกราคม - มิถุนายน และกรกฎาคม - ธันวาคม ของทุกปี จัดพิมพ์โดยกลุ่มวิจัยวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ คณะวิศวกรรมศาสตร์มหาวิทยาลัยขอนแก่น เพื่อเป็นการส่งเสริมและเผยแพร่ความรู้ ผลงานทางวิชาการ งานวิจัยทางด้านวิศวกรรมศาสตร์และเทคโนโลยีพร้อมทั้งยังจัดส่ง เผยแพร่ตามสถาบันการศึกษาต่างๆ ในประเทศด้วย บทความที่ตีพิมพ์ลงในวารสาร FEAT ทุกบทความนั้นจะต้องผ่านความเห็นชอบจากผู้ทรงคุณวุฒิในสาขาที่เกี่ยวข้องและสงวนสิทธิ์ ตาม พ.ร.บ. ลิขสิทธิ์ พ.ศ. 2535
References
Ramesh Kumar R, et al. Experimental and analytical investigation on friction welding dissimilar joints for aerospace applications. Ain Shams Engineering Journal 2023; 14(2), 1-17.
Ho Thi My N, et al. A Study on Rotary Friction Welding of Titanium Alloy (Ti6Al4V). Advances in Materials Science and Engineering 2019; 2019(1), 1-9.
Wen ya L, Fei fan W. Modeling of continuous drive friction welding of mild steel. Materials Science and Engineering A 2011; 528, 5921–5926.
Friction Welding: Principle, Working, Type, Application, Advantages and Disadvantages [Internet]. [cited 2017 April 6] Available from: URL: https://www.mech4study.com/ 2017/04/friction-welding-principle- working-types-application-advantages-and-disadvantages.html.
Eder Paduan A, et al. Experimental Thermal Analysis in Rotary Friction Welding of Dissimilar Materials. J Aerosp. Technol Manag 2019; 11(e4019): 1-9.
Jabbar Hassan A, et al. Experimental Investigation of Friction Pressure Influence on the Characterizations of Friction Welding Joint for AISI 316. International Journal of Engineering. IJE TRANSACTIONS C: Aspetcs 2020; 33(12), 2514-2520.
Xiawei Y, et al. Finite element modelling for temperature, stressesand strains calculation in linear friction welding ofTB9 titanium alloy. J m a t e r r e s t e c h n o l 2 0 1 9; 8(5), 4797–4818.
Seli H, et al. Evaluation of Properties and FEM Model of the Friction Welded Mild Steel - Al6061 - Alumina. Materials Research 2013; 6(2), 453-467.
Li W Y, et al. Heat reflux in flash and its effect on joint temperature history during linear friction welding of steel. International Journal of Thermal Sciences 2013; 67 (2), 192-199.
Kimura M, et al. Analysis Method of Friction Torque and Weld Interface Temperature During Friction Process of Steel Friction Welding. Journal of Solid Mechanics and Materials Engineering 2010; 4(3), 401-403.
ABAQUS Example problem guide, Volume I: Static and dynamic analysis; 2016.
Medhat Awad El-Hadek. Sequential Transient Numerical Simulation of Inertia Friction Welding Process. Proceedings of IMECE2008 ASME International Mechanical Engineering Congress and Exposition; 2008 Oct 31- Nov 6; Boston, Massachusetts, USA.