Replacing a Affordable Mitsubishi FX3U-Compatible PLC Control System with Siemens LOGO!: A Case Study of a Bottle Packaging Conveyor System

Main Article Content

Shutchon Premchaisawatt
ณรงค์ บุญเสนอ
กฤช ตราชู

Abstract

This research aims to study the adaptation of an automatic control system for water packaging processes from an affordable Mitsubishi FX3U-Compatible PLC (LE3U-48MR6AD2DA) to a Siemens LOGO! system. The primary objectives were to compare the performance, capabilities, and cost-effectiveness of both control systems. The study began by collecting input and output data from the original system, analyzing its operational steps, and designing a new state diagram. For the Siemens LOGO! implementation, the researchers utilized a DM16 24R 8DI/8RO expansion module to accommodate the increased input and output requirements. Additionally, they developed a Human-Machine Interface (HMI) using an SK-102QS-G to enhance system control and monitoring capabilities. The research findings revealed that the Siemens LOGO! offered superior system expansion, connectivity, and operational flexibility compared to the low-cost PLC. However, this came with some trade-offs, including a higher purchase price and longer system initialization time. The key advantages of the Siemens LOGO! included its compact design, easy installation, Ethernet communication support, and user-friendly software. The research demonstrates that Siemens LOGO! presents an attractive option for small to medium-sized automatic control systems, particularly in industries requiring flexibility and ease of development. Nevertheless, system selection should carefully consider specific system requirements, budget constraints, and the complexity of the control process.

Article Details

How to Cite
1.
Premchaisawatt S, บุญเสนอ ณ, ตราชู ก. Replacing a Affordable Mitsubishi FX3U-Compatible PLC Control System with Siemens LOGO!: A Case Study of a Bottle Packaging Conveyor System. featkku [internet]. 2024 Dec. 26 [cited 2026 Jan. 22];10(2):81-92. available from: https://ph02.tci-thaijo.org/index.php/featkku/article/view/256978
Section
Research Articles

References

Segovia VR, Theorin A. History of Control History of PLC and DCS. University of Lund. 2012; 44:45.

Yao KC, Lin CL, Pan CH. Industrial Sustainable Development: The Development Trend of Programmable Logic Controller Technology. Sustainability. 2024. doi:10.3390/su16146230.

Sehr MA, Lohstroh M, Weber M, Ugalde I, Witte M, Neidig J, Hoeme S, Niknami M, Lee EA. Programmable Logic Controllers in the Context of Industry 4.0. IEEE Trans Ind Inform. 2021;17:3523-3533.

Nan W. Research on the Development Trend of Industrial Automation Control Technology. 2020.

Tabassum M, Perumal S, Mohanan S, Suresh P, Cheriyan S, Hassan W. IoT, IR 4.0, and AI Technology Usability and Future Trend Demands. 2021.

Mahamad K, Khamtree S, Chuvanich S. Implementation of Smart Farm System for Schizophyllum commune Production. J Adv Dev Eng Sci. 2023 Aug;12(33):56-74.

Thanasin K, Singkhleewon N, Khambun A, Putthala S, Pankang T. Prototype System PLC Machine in Shrimp Farming lndustrial: ระบบต้นแบบเครื่อง PLC ในอุตสาหกรรมบ่อเลี้ยงกุ้ง . AdvSciJ [Internet]. 2023 Aug. 8 [cited 2024 Dec. 4];23(2):R156-R174. Available from: https://li02.tci-thaijo.org/index.php/adscij/article/view/523

Srichat A. Development of the automatic pouring raw milk storage tank machine. FARM ENGINEERING AND AUTOMATION TECHNOLOGY JOURNAL. 2020 Jun.;6(1):21-28.

สุขแก้ว อ, บุญรอด ว. การออกแบบเครื่องบรรจุหนังปลากะพงปรุงรสโดยใช้ระบบนิวเมติกส์. วารสารเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏอุบลราชธานี. 2019 ก.ย.;9(2):49-60.

Srutram P. Robot Arm Picked Up the Material From the Automatic Sorting Machine with Conveyor Belt. FARM ENGINEERING AND AUTOMATION TECHNOLOGY JOURNAL. 2018 Jan.;4(1):19-27.

Vengsungnle P, Srisorn W, Chaibundit K, Jongpluempiti J. Development of A Semi-Automatic Straw Mushroom Substrate Briquetting Machine. FARM ENGINEERING AND AUTOMATION TECHNOLOGY JOURNAL. 2021 Jun.;7(1):10-20. Available from: https://ph02.tci-thaijo.org/index.php/featkku/article/view/2289873

Premchaisawatt S, Boonsaner N, Tashoo K, Laoha C, Buarapha P. Programming Guidelines for Sequential Automation Tasks in Low-Cost Systems. FARM ENGINEERING AND AUTOMATION TECHNOLOGY JOURNAL. 2024 Jun.;10(1). Available from: https://ph02.tci-thaijo.org/index.php/featkku/article/view/249275

Schubert H, Thiele C. Programmable Logic Controllers: A Focus on Small-Scale Automation. Industrial Automation Journal. 2017;29(4):45–56

Lerdwongpaisan A. Automated tyre sorting system using Mitsubishi FX3U PLC controller. In: Proceedings of the 2013 Conference. 2013. Available from: https://api.semanticscholar.org/CorpusID:196125687

Millinger D, Nossal R. The Industrial Communication Technology Handbook. Zurawski, Ed. Boca Raton, FL: CRC; 2005.

Siemens AG. LOGO! as the Smart Mini Controller for Industry 4.0. White Paper. Siemens AG; 2020.

MURSHALIN M, et al. Efficient Control and Automation: Exploring Siemens LOGO PLC and PLC-Based Industrial Timer Controllers. Asian Journal of Applied Science and Technology (AJAST), 2024, 8.2: 34-43. DOI: https://doi.org/10.38177/ajast.2024.8204

Haider Z, Shah M, Qureshi, A. Water Pump Control using Siemens LOGO! in Smart Irrigation Systems. Environmental Control Engineering, 2021; 32(5): 106-112

Sato, T, Inoue Y. HVAC System Control with Siemens LOGO! PLC. Automation and Control Technology, 2019; 29(8): 77-83

Sato H, Tanaka T, Kato Y. Design and Implementation of a Conveyor System with Siemens LOGO! PLC. Journal of Automation Engineering, 2019; 24(6): 312-318.

Siemens AG. LOGO! Manual for LOGO! 8.3. Siemens Documentation Portal [Internet]. 2023 [cited 2024 Nov 21]. Available from: https://support.industry.siemens.com