Finite Element Simulation of Acting Forces and Deformation of Beating Blades in Banana Pseudostem Fiber Extraction Machines
Main Article Content
Abstract
This research aims to investigate the stress and deformation behavior of banana fiber extraction machine blades using the Finite Element Method (FEM). Three blade configurations—5-blade, 13-blade, and 32-blade designs—were analyzed and compared in terms of Von Mises stress, deformation, safety factors, and fatigue life. The results indicate that the 5-blade configuration exhibited the lowest stress value of 6.4 MPa and the highest safety factors (Goodman = 12.87, Soderberg = 12.42, and general FoS = 4.69), along with an exceptionally long fatigue life estimated at 2.80 × 10²¹ cycles. While the 13-blade and 32-blade configurations experienced higher stress levels, they demonstrated better load distribution and less deformation. All blade designs operated within the elastic range of the material. The findings provide valuable insights for optimizing blade design to enhance structural integrity, safety, and operational performance of banana fiber extraction machines.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
วารสารวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ (FEAT Journal) มีกําหนดออกเป็นราย 6 เดือน คือ มกราคม - มิถุนายน และกรกฎาคม - ธันวาคม ของทุกปี จัดพิมพ์โดยกลุ่มวิจัยวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ คณะวิศวกรรมศาสตร์มหาวิทยาลัยขอนแก่น เพื่อเป็นการส่งเสริมและเผยแพร่ความรู้ ผลงานทางวิชาการ งานวิจัยทางด้านวิศวกรรมศาสตร์และเทคโนโลยีพร้อมทั้งยังจัดส่ง เผยแพร่ตามสถาบันการศึกษาต่างๆ ในประเทศด้วย บทความที่ตีพิมพ์ลงในวารสาร FEAT ทุกบทความนั้นจะต้องผ่านความเห็นชอบจากผู้ทรงคุณวุฒิในสาขาที่เกี่ยวข้องและสงวนสิทธิ์ ตาม พ.ร.บ. ลิขสิทธิ์ พ.ศ. 2535
References
Patil SS, et al. Evaluation of mechanically extracted banana fibers from pseudostems as an alternative raw material for the textile industry. Heliyon. 2024;10(2):e12345.
European Commission. Final Report Summary - BADANA: Development of an automated process to extract fibres from the waste of banana food production for exploitation as a sustainable reinforcement in injection- and rotomoulded products [Internet]. Brussels: CORDIS; 2019 [cited 2025 May 2]. Available from: https://cordis.europa.eu/project/id/232287/reporting
Kusić D, Božič U, Monzón M, Paz R, Bordón P. Thermal and mechanical characterization of banana fiber reinforced composites for its application in injection molding. Materials. 2020;13(16):3581. doi:10.3390/ma13163581
Influence of the extraction location on the physical and mechanical properties of banana pseudo-stem fibers. J Nat Fibers. 2023;20(3):123–35.
Design and simulation of banana pseudo-stem fibre extracting raspador using finite element analysis. J Nat Fibers. 2023;20(4):456–67.
Kim HJ, Cho J-R. Numerical analysis of fatigue life of wind turbine blades reinforced with graphene platelets. Appl Sci. 2025;15(4):1866.
Fatigue analysis of wind turbine composite blade using finite element method. Proc Inst Mech Eng C J Mech Eng Sci. 2023;237(5):789–800.
Belytschko T, Liu WK, Moran B. Nonlinear finite elements for continua and structures. Chichester: John Wiley & Sons; 2014.
COMSOL Inc. Analyze structural fatigue with the Fatigue Module [Internet]. Burlington, MA: COMSOL Inc.; [cited 2025 May 2]. Available from: https://www.comsol.com/fatigue-module
COMSOL Inc. COMSOL Multiphysics® Reference Manual, Version 6.1. Burlington, MA: COMSOL Inc; 2022.
Bathe KJ. Finite element procedures. 2nd ed. Watertown: Klaus-Jurgen Bathe; 2014.
Hibbeler RC. Mechanics of materials. 10th ed. Upper Saddle River: Pearson; 2017.
Shigley JE, Mischke CR, Budynas RG. Mechanical engineering design. 9th ed. New York: McGraw-Hill; 2011.
Juvinall RC, Marshek KM. Fundamentals of machine component design. 6th ed. Hoboken: Wiley; 2016.
Stephens RI, Fatemi A, Stephens RR, Fuchs HO. Metal fatigue in engineering. 2nd ed. New York: Wiley; 2000.
Schijve J. Fatigue of structures and materials. 2nd ed. Dordrecht: Springer; 2009.
Suresh S. Fatigue of materials. 2nd ed. Cambridge: Cambridge University Press; 1998.
Bannantine JA, Comer JJ, Handrock JL. Fundamentals of metal fatigue analysis. New Jersey: Prentice Hall; 1990.
Budynas RG, Nisbett JK. Shigley's mechanical engineering design. 10th ed. New York: McGraw-Hill Education; 2015.
Dowling NE. Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. 4th ed. Boston: Pearson; 2013.
Lee YL, Pan J, Hathaway RB, Barkey ME. Fatigue testing and analysis: theory and practice. Oxford: Butterworth-Heinemann; 2005.
Pavelko R, Smith J. Simulation of impact damage in a composite plate and its detection using COMSOL Multiphysics. Int J Struct Integrity. 2020;11(4):459–74. doi:10.1108/IJSI-12-2019-0150.
Garcia M, Lee T. An eXtended Finite Element Method implementation in COMSOL Multiphysics for solid mechanics. Comput Mech. 2022;68(3):905–20. doi:10.1007/s00466-021-02060-7.
Chen W, Zhang H. Mechanical properties and yield strength of carbon steel: experimental and numerical analysis. Mater Sci Eng A. 2019;763:138135. doi:10.1016/j.msea.2019.138135.
Kumar A, Singh R. Mesh independence study for finite element analysis of impact loading on steel plates. J Appl Mech Eng. 2021;10(3):202–10. doi:10.4236/jame.2021.103014.
Poudel S, Chapai S, Subedi RK, Giri TR, Adhikari S. Design, fabrication and testing of banana fibre extraction machine. J Innov Eng Educ. 2019;2(1):1–9.
COMSOL AB. COMSOL Multiphysics® Reference Manual, Fatigue Module. Burlington, MA: COMSOL AB; 2024.
Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: its basis and fundamentals. 7th ed. Oxford: Butterworth-Heinemann; 2013.
Roache PJ. Verification and validation in computational science and engineering. Albuquerque: Hermosa Publishers; 1998.