Comparative Performance Evaluation of Beater Blade Designs in a Banana Sheath Fiber Extraction Machine for Natural Fiber Applications
Main Article Content
Abstract
This study evaluates the performance of three beater blade configurations—5-blade, 13-blade, and 32-blade designs—for banana fiber extraction, focusing on mechanical strength, production yield, fiber quality, and energy efficiency. Using standardized fresh banana sheaths, experiments were conducted with three replications per test group to ensure statistical reliability. The results demonstrate that the 5-blade configuration offers the superior engineering profile, exhibiting the lowest bending stress at 19.4 MPa and a minimum shear stress of 1.90 MPa, which is 33.5% lower than the alternative designs. This significantly enhances structural safety against fatigue and cracking. Regarding production performance, the 5-blade design achieved the highest fiber yield ($Y\%$) and Fiber Quality Index (FQI), particularly at a clearance of 0.8–0.9 mm with a 5-inch pulley. This setup optimized energy consumption, reaching a minimum specific energy of 0.06 kilowatt-hours per kilogram (kWh/kg), representing a 68.4% reduction in energy usage compared to the 32-blade model. While the 13-blade design yielded comparable quantities to the 5-blade version, it exhibited higher qualitative variability. Conversely, the 32-blade design performed poorly across all metrics due to extensive fiber damage during extraction. In conclusion, the 5-blade beater blade provides the optimal balance of material safety, yield quality, and energy efficiency, providing a definitive framework for enhancing the efficiency and sustainability of small-scale industrial banana fiber production.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
วารสารวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ (FEAT Journal) มีกําหนดออกเป็นราย 6 เดือน คือ มกราคม - มิถุนายน และกรกฎาคม - ธันวาคม ของทุกปี จัดพิมพ์โดยกลุ่มวิจัยวิศวกรรมฟาร์มและเทคโนโลยีควบคุมอัตโนมัติ คณะวิศวกรรมศาสตร์มหาวิทยาลัยขอนแก่น เพื่อเป็นการส่งเสริมและเผยแพร่ความรู้ ผลงานทางวิชาการ งานวิจัยทางด้านวิศวกรรมศาสตร์และเทคโนโลยีพร้อมทั้งยังจัดส่ง เผยแพร่ตามสถาบันการศึกษาต่างๆ ในประเทศด้วย บทความที่ตีพิมพ์ลงในวารสาร FEAT ทุกบทความนั้นจะต้องผ่านความเห็นชอบจากผู้ทรงคุณวุฒิในสาขาที่เกี่ยวข้องและสงวนสิทธิ์ ตาม พ.ร.บ. ลิขสิทธิ์ พ.ศ. 2535
References
Ruangnarong C, Khojitmate S, Srivorradatphisan S, Panyathikun N, Chonsakorn S. Evaluation of mechanically extracted banana fibers from pseudostem layers: a sustainable textile raw material. Heliyon. 2024;10:e39880. doi:10.1016/j.heliyon.2024.e39880.
Badanayaka P, Jose S, Bose G. Banana pseudostem fiber: a critical review on fiber extraction, characterization, and surface modification. J Nat Fibers. 2023;20(1):2168821. doi:10.1080/15440478.2023.2168821.
Liang D, Yu S, Fu W, Shen Y, Yang Z, Zeng W, et al. Design and experimental evaluation of a pulsating rubbing-based banana fiber extractor. Agriculture. 2025;15(16):1746. doi:10.3390/agriculture15161746.
Mahmoud WA El-Magd, Elkaoud NSM, Eissa AS, Mousa AMM. Mechanical processing of banana slices-stem for fiber extraction. Agric Eng Int CIGR J. 2023;25(4):236–45.
Beer FP, Johnston ER, DeWolf JT, Mazurek DF. Mechanics of materials. 8th ed. New York: McGraw-Hill Education; 2020. ISBN:978-1-260-11327-3.
Hibbeler RC. Mechanics of materials. 11th ed. Boston: Pearson Education; 2022.
Baye B, Tesfaye T. Optimization of extraction techniques for processing and utilization of Cyperus dichrostachus A. Rich plant as fiber. Research Square [Preprint]. 2022. doi:10.21203/rs.3.rs-1201864/v1.
Baye B, Tesfaye T. Optimization of extraction techniques for processing and utilization of Cyperus dichrostachus A. Rich plant as fiber. Research Square [Preprint]. 2022. doi:10.21203/rs.3.rs-1201864/v1.
Soomro AR, Rossi F. SOLIDWORKS™ design, fabrication and performance analysis of a banana fiber extraction machine and its components. Mehran Univ Res J Eng Technol. 2024;43(3):190–204. doi:10.22581/muet1982.3253.
Bordón P, Elduque D, Paz R, Javierre C, Kusić D, Monzón M. Analysis of processing and environmental impact of polymer compounds reinforced with banana fiber in an injection molding process. J Clean Prod. 2022;379(Pt 1):134476. doi:10.1016/j.jclepro.2022.134476.
Khan BM, Jogdand SV, Joshi J, Naik RK, Victor. Performance evaluation of banana fiber production unit. Int J Agric Food Sci. 2025;7(7):86–92. doi:10.33545/2664844X.2025.v7.i7b.500.
Poudel S, Chapai S, Subedi RK, Giri TR, Adhikari S. Design, fabrication and testing of banana fibre extraction machine. J Innov Eng Educ. 2019;2(1). doi:10.3126/jiee.v2i1.36668.
Lal SB, Kushwaha S, Singh P, Yadav D, Singh R. Banana fiber extracting machine. Int Adv Res J Sci Eng Technol. 2022;9(5). doi:10.17148/IARJSET.2022.9536.
Pandey S, Naik RK, Patel KK. Design and development of cutting unit for the banana pseudostem using power screw mechanism. Biol Forum Int J. 2022;14(4):692–7.
ASM International. ASM handbook. Vol 1, Properties and selection—irons, steels, and high-performance alloys. Materials Park (OH): ASM International; 2021.