Theoretical Investigation of NO2 Adsorption on C–, Si–, and Ge–doped Boron Nitride Nanomaterials

Main Article Content

Wandee Rakrai
Chanukorn Tabtimsai
Banchob Wanno

Abstract

The adsorption abilities, structural and electronic properties of nitrogen dioxide (NO2) molecule adsorbed on pristine, and C–, Si–, and Ge–doped boron nitride nanosheets (BNNS) and nanotubes (BNNT) were investigated using the density functional theory method. The binding energies of doping reveal that the C atom doping exhibits the strongest binding ability with both BNNS and BNNT. In addition, the NO2 molecule weakly interacts with the pristine BNNS and BNNT, whereas it has a strong adsorption ability with C–, Si–, and Ge–doped BNNSs and BNNTs. The electronic properties such as the energy gap and partial charge transfer of all atomic doped–BNNSs and BNNTs are significantly modified after NO2 adsorptions. Thus, the C–, Si–, and Ge–doped BNNSs and BNNTs can be used as NO2 gas storage and sensing.

Article Details

How to Cite
1.
Rakrai W, Tabtimsai C, Wanno B. Theoretical Investigation of NO2 Adsorption on C–, Si–, and Ge–doped Boron Nitride Nanomaterials. Prog Appl Sci Tech. [internet]. 2021 Feb. 24 [cited 2025 Jan. 19];11(1):46-52. available from: https://ph02.tci-thaijo.org/index.php/past/article/view/242138
Section
Pure and Applied Chemistry

References

Chopra N.G., Luyken R.J., Cherrey K., Crespi V.H., Cohen M.L., Louie S.G., and Zettl A. Boron nitride nanotubes. Science. 1995. 269 : 966–967.

Novoselov K.S., Jiang D., Schedin F., Booth T.J., Khotkevich V.V., Morozov S.V., and Geim A.K. Two–dimensional atomic crystals. P Natl Acad Sci USA. 2005. 102 : 10451–10453

Golberg D., Bando Y., Huang Y., Terao T., Mitome M., Tang C., and Zhi C. Boron Nitride Nanotubes and Nanosheets. Acs Nano. 2010. 4 : 2979–2993.

Yazyev O.V. and Pasquarello A. Metal adatoms on graphene and hexagonal boron nitride: towards rational design of self–assembly templates. Phys Rev. B. 2010. 82 : 045407 – 045412.

Noorizadeh S. and Shakerzadeh E. Formaldehyde adsorption on pristine, Al–doped and mono–vacancy defected boron nitride nanosheets: A first principles study. Comp Mater Sci. 2012. 56 : 122–130.

Phalinyot S., Tabtimsai C., and Wanno B. Nitrogen monoxide storage and sensing applications of transition metal–doped boron nitride nanotubes: a DFT investigation. Struct Chem. 2019. 30 : 2135–2149.

Xie Y., Huo Y–P., and Zhang J–M. First–principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube. Appl Surf Sci. 2012. 258 : 6391– 6397.

Sripadung P., Nunthaboot N., and Wanno B. DFT investigation of O2 and PH3 adsorptions on group 8B metal–doped boron nitride nanotubes. Sci. & Tech. RMUTT J. 2018. 8(2) : 53–64.

Venkataramanan N.S., Khazaei M., Sahara R., Mizuseki H., and Kawazoe Y. First–principles study of hydrogen storage over Ni and Rh doped BN sheets. Chem Phys. 2009. 359 : 173–178.

Sripadung P., Nunthaboot N., and Wanno B. Group 8B transition metal‑doped (5,5) boron nitride nanotubes for NH3 storage and sensing: a theoretical investigation. Monatsh Chem. 2019. 150 : 1011–1018.

Behmagham F., Vessally E., Massoumi B., Hosseinian A., and Edjlali L. A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattice Microst. 2016. 100 : 350–357.

Deng Z–Y., Zhang J–M., and Xu K–W. First–principles study of SO2 molecule adsorption on the pristine and Mn–doped boron nitride nanotubes. Appl Surf Sci. 2015. 347 : 485–490.

Al–Sunaidi A. Adsorption of SO2 and NO2 on metal–doped boron nitride nanotubes: A computational study. Comput Theor Chem. 2016. 1092 : 108–113.

Vanalakar S.A., Patil V.L., Harale N.S., Vanalakar S.A., Gang M.G., Kim J.Y., Patil P.S., and Kim J.H. Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications, Sensor Actuat B-Chem. 2015. 221 : 1195–1201.

Lamsal L.N., Martin R.V., van Donkelaar A., Steinbacher M., Celarier E.A, Bucsela E., Dunlea E.J., and Pinto J. P. Ground–level nitrogen dioxide concentrations inferred from the satellite–borne ozone monitoring instrument. J Geophys Res. 2008. D16308. 113 : 1–15.

Kim J.S., Yoon J.W., Hong Y.J., Kang Y.C., Abdel–Hady F., Wazzan A.A., and Lee J.H. Highly sensitive and selective detection of ppb–level NO2 using multi–shelled WO3 yolk–shell spheres. Sensor Actuat B-Chem. 2016. 229 : 561–569.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Lyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A., Cammi R., Pomell C., Ochterski J. W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V G., Dapprich S., Daniels A. D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M., Johnson B., Chen W., Wong M.W., Gonzalez C., and Pople J.A, GAUSSIAN 09. Revision A.02, Gaussian Inc., Wallingford, CT, 2009.

Lee C., Yang W., and Parr R.G. Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density. Phys Rev. B. 1988. 37 : 785–789.

Becke A.D. Density–functional thermochemistry. III The role of exact exchange. J Chem Phys. 1993. 98 : 5648–5652.

Becke A.D. Density–functional exchange–energy approximation with correct asymptotic behavior. Phys Rev. A. 1988. 38 : 3098–3100.

Hay P.J. and Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys. 1985. 82 : 270–283.

Hay P.J. and Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys. 1985. 82 : 284–298.

Hay P.J. and Wadt W.R. Initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbital. J Chem Phys. 1985. 82 : 299–310.

Baei M.T, Bagheri Z., and Peyghan A.A. Transition metal atom adsorptions on a boron nitride nanocage. Struct Chem. 2013. 24 : 1039–1044.

Kaewruksa B. and Ruangpornvisuti V. Theoretical study on the adsorption behaviors of H2O and NH3 on hydrogen–terminated ZnO nanoclusters and ZnO graphene–like nanosheets. J Mol Struct. 2011. 994 : 276–282.

Vessally E., Dehbandi B., and Edjlali L. DFT study on the structural and electronic properties of Pt–doped boron nitride nanotubes. Russ. J Phys Chem A. 2016. 90 : 1217– 1223.

Foster J.P. and Weinhold F. Natural hybrid orbitals natural hybrid orbitals. J Am Chem Soc. 1980. 102(24) : 7211–7218.

Flükiger P., Lüthi H.P., and Portmann S. MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno, Switzerland, 2000.

Almen N., Erni R., Kisielowski C., Rossell M.D., Gannett W., and Zettl A. Automically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys Rev. B. 2009. 80 : 155425–155431.

Noorizadeh S. and Shakerzadeh E. Formaldehyde adsorption on pristine, Al-doped and mono-vacancy defected boron nitride nanosheets: A first principles study. Comp Mater Sci. 2012. 56 : 122–130.

Tabtimsai C., Nonsri A., Gratoo N., Massiri N., Suvanvapee P., and Wanno B. Carbon monoxide adsorption on carbon atom doped perfect and Stone–Wales defect single-walled boron nitride nanotubes: A DFT investigation. Monatsh Chem. 2014. 145 : 725–735.

Peyghan A.A., Baei M.T., Moghimi M., and Hashemian S. Phenol adsorption study on pristine, Ga-, and In-doped (4,4) armchair single-walled boron nitride nanotubes. Comput Theor Chem. 2012. 997 : 63–69.

Oku T. and Narita I. Atomic structures and stabilities of zigzag and armchair-type boron nitride nanotubes studied by high-resolution electron microscopy and molecular mechanics calculation. Diamond Relat. Mater. 2004. 13:1254–1260.