On the stability for SEIR and SEIQR epidemic model
Main Article Content
Abstract
In this paper, the SEIR and SEIQR epidemic model are considered and found the equilibrium points, disease-free equilibrium point and endemic equilibrium point. Furthermore, each equilibrium point is also proved the locally asymptotically stable.
Article Details
References
Anderson R. M. and May R. M. Population biology of infectious diseases I. Nature. 1979. 280 : 361-367.
McCluskey C. C. Complete global stability for an SIR epidermic model with delay-Distributed or discrete. Nonlinear Analysis: Real World Applications. 2010. 11 : 55-59.
Shulgin B., Stone L. and Agur Z. Pulse vaccination strategy in the SIR epidemic model. Bulletin of Mathematical Biology. 1998. 60 : 1123-1148.
Li M. Y., Graef J. R., Wang L. and Karsai J. Global dynamics of a SEIR model with varying total population size. Mathematical Biosciences. 1999. 160 : 191-213.
Ojo M. M. and Akinpelu F. O. Lyapunov functions and global properties of SEIR epidemic model. International Journal of Chemistry, Mathematics and Physics. 2017. 1 : 11-16.
Wang X., Peng H., Shi B., Jiang D., Zhang S. and Chen B. Optimal vaccination strategy of a constrained time-varying SEIR epidemic model. Communications in Nonlinear Science and Numerical Simulation. 2018. 67 : 37-48.
Gerberry D. J. and Milner F. A. An SEIQR model for childhood diseases. Journal of Mathematical Biology. 2009. 59 : 535-561.
Mishra B. K. and Jha N. SEIQRS model for transmission of malicious objects in computer network. Applied Mathematical Modelling. 2010. 34 : 710-715.
Chen Z. and Huang J. Stabilization and regulation of nonlinear systems a robust and adaptive approach. Springer, Switzerland. 2015.
Khalil H. K. Nonlinear Systems. 3rd ed. Pearson, London. 2002.
Leah E. K. Mathematical Models in Biology. Random House, New York. 2005.
Barnett S. and Cameron R. G. Introduction to mathematical control theory. 2nd ed. Clarendon press, Oxford. 1985.