New Fixed Point Theorems for θ-ϕ Suzuki Contraction on Partial Metric Spaces
Main Article Content
Abstract
In this paper, we establish new fixed point theorems for θ-ϕ Suzuki contraction on complete partial metric spaces. The results presented in the paper improve and extend some previous results.
Article Details
References
M.P. Schellekens, A characterization of partial metrizability: domains are quantifiaple, Theor. Computer Science, 305 (2003), 409-432. https://doi.org/10.1016/s0304-3975(02)00705-3
S. Romaquera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., 2010 (2010) Article ID 493298, 1-7. https://doi.org/10.1155/2010/493298
M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. https://doi.org/10.1186/1029-242x-2014-38
T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317. 1,2.4
R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Struc-tures, 7(1999), 71-83.
S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ.Trieste, Spanish Ministry of Science and Technology, (2004), 17-26.
T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces,Mathematical and computer Modelling, 54 (2011) no. 11-12, 2923-2927. http://doi.org/10.1016/j.mcm.2011.07.013
I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory and Applications, 2011 (2011), 1155-1165. http://doi.org/10.1155/2011/508730
Dingwei Zheng, Zhangyong Cai, Pei Qang, New fixed point theorems for θ-ϕ contraction in complete metric spaces. Journal of Nonlinear Sciences and Applications, 10 (2017), 2662-2670. http://doi.org/10.22436/jnsa.010.05.32
T.Tao Hu, Dingwei Zheng and Jingren Zhou^1 Some New Fixed Point Theorems on Partial Metric Spaces International Journal of Mathematical Analysis Vol. 12, 2018, no. 7, 343-352 HIKARI Ltd,www.m-hikari.com http://doi.org/10.12988/ijma.2018.8538
S.Banach, Sur les ope ́rations dans les ensembles abseraits et leur application aux e ́quations inte ́grales, Fund. Math., 3 (1922), 133-181.