Diversity of Weed for Ethanol Production in Muang District Area, Tak Province

Main Article Content

บุณฑริก รอดบำรุง

Abstract

The objectives of this research were to survey of weeds distributed in Mueang District, Tak Province, to determine the chemical compositions of weeds including moisture content, ash content, lignin content, hemicellulose content and cellulose content and to determine theoretical ethanol yield. The studies aimed at establishing fundamental information on utilization of weeds for energy purposes. The result revealed that there are 35 weed species in 33 genera and 19 families. Fabaceae was the families with the largest number of weeds in this area (7 species). The chemical compositions analysis of moisture content, ash content, lignin content, hemicellulose content and cellulose content were 4.51-24.18, 4.33-22.22, 4.52-16.94, 4.83-27.05 and 13.41-44.69 %, respectively. The theoretical ethanol yield was 131.99-480.41 litres per ton. The studies also showed that moisture content, ash content, lignin content and hemicellulose content of the majority weeds were low while cellulose content was moderate to high. The results showed that Phragmites vallatoria weeds is suitable and highest potential for ethanol production. It produced highest amount of cellulose content and theoretical ethanol yield (44.69±0.32%, 480.41±0.05 litres per ton), whereas hemicellulose and lignin content are low (21.60±0.30%, 12.75±0.47%).

Article Details

How to Cite
1.
รอดบำรุง บ. Diversity of Weed for Ethanol Production in Muang District Area, Tak Province. Prog Appl Sci Tech. [Internet]. 2019 Dec. 31 [cited 2024 Nov. 15];9(2):107-24. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/242956
Section
Biology and Bioresource technology

References

Chang J., Leung D.Y.C., Wu C.Z. and Yuan Z.H. A review on the energy production, consumption and prospect of renewable energy in China. Renewable and Sustainable Energy Reviews. 2003. 7: 453-468.

Gnansounou E. and Dauriat A. Ethanol fuel from biomass: A review. Journal of Scientific and Industrial Research. 2005. 64: 809-821.

Escobar J.C., Lora E.S., Venturini O.J., Yanez E.E., Castillo E.F. and Almazan O. Biofuels: Environment, technology and food security. Renewable and Sustainable Energy Reviews. 2009. 13: 1275-1287.

Seungdo K. and Bruce E.D. Global potential bioethanol production from wasted crops and cropresidues. Biomass and Bioenergy. 2004. 26: 361-375.

Abbasi T. and Abbasi S.A. Biomass energy and the environmental impacts associated with its production and utilization. Renewable and Sustainable Energy Reviews. 2010. 14: 919-937.

Betts W.B., Dart R.K., Ball A.S. and Pedlar S.L. Biosynthesis and structure of lignocellulose. In: Betts W.B., editor. Biodegradation: natural and synthetic materials. Springer, Berlin, Germany. 1991: 139-155.

Sannigrahi P., Ragauskas A.J. and Tuskan G.A. Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels, Bioproducts and Biorefining. 2010. 4: 209-226.

DoKyoung L., Vance N.O., Boe A. and Jeranyama P. Composition of herbaceous biomass feedstocks. North Central Sun Grant Center. South Dakota State University. 2007.

Wang X., Feng H. and Li Z. Pretreatment of switchgrass with electrolyzed water and a two-stagemethod for bioethanol production. Biotechnology and Bioprocess Engineering. 2012. 17: 624-633.

Han M., Choi G., Kim Y. and K B. Bioethanol production by Miscanthus as a lignocellulosic biomass: focus on high efficiency conversion to glucose and ethanol. Bioresources. 2011. 6(2): 1939-1953.

Zhang K., Johnson L. Prasad P.V.V., Pei Z., Yuan W. and Wang D. Comparison of big bluestem with other native grasses: Chemical composition and biofuel yield. Energy. 2015. 83: 358-365.

Bensah E.C., Kadar Z. and Mensah, M.Y. Ethanol production from hydrothermally-treaded biomass from west Africa. Bioresources. 2015. 10(4): 6522-6537.

Cotana F., Cavalaglio G., Pisello A.L., Gelosia M., Ingles D. and Pompili E. Sustainable ethanol production from common reed (Phragmites australis) through simultaneuos saccharification and fermentation. Sustainability. 2015. 7: 12149-12163.

Sopajarn A. and Sangwichien C. Optimization of enzymatic saccharification of alkali pretreated Typha angustifolia for glucose production. International Journal of Chemical Engineering and Applications. 2015. 6(4): 232-236.

Prasertwasu S., Khumsupan D., Komolwanich T., Chaisuwan T., Luengnaruemitcha A. and Wongkasemjit S. Efficient process for ethanol production from Thai Mission grass (Pennisetum polystachion). Bioresource Technology. 2014. 163: 152-159.

Noda K., Teerawatsakul M., Prakongvongs C. and Chaiwiratnukul L. Project Manual no.1 Major Weeds in Thailand: illustrated by color. 3rd ed. Bangkhen, Bangkok, Thailand. 1994.

ธวัชชัย รัตน์ชเลศ และเจมส์ เอฟ แมกซ์เวล. รายชื่อวัชพืชที่มีรายงานพบในประเทศไทย. พิมพ์ครั้งที่ 2. กรุงเทพมหานคร. 2540.

Goering H.K. and Soest P.J.V. Forage Fiber Analyses (apparatus, reagent, procedures and some application). In: Agriculture Hanhbook No. 379, United State Department of Agriculture Research Service, Washington, D.C. 1970.

Premjet S., Pumira B. and Premjet D. Determining the potential of inedible weed biomass for bio-energy and ethanol production. Bioresources. 2013. 8(1): 701-716.

Sousa L.C., Chundawat S.P.S., Balan V. and Dale B.E. ‘Cradle-to-grave’ assessment of existing lignocelluloses pretreatment technologies. Current Opinion in Biotechnology. 2009. 20: 339-347.

สำนักงานนโยบายและแผนทรัพยากร ธรรมชาติและสิ่งแวดล้อม. มาตรการป้องกันควบคุมและกำจัดชนิดพันธุ์ต่างถิ่น. บริษัทอินทิเกรเต็ด โปรโมชั่น เทคโนโลยี จำกัด. กรุงเทพมหานคร. 2552.

Zungsontiporn S. Global invasive plants in Thailand and its status and a case study of Hydrocotyle umbellata L. Proceedings of International Workshop on Development of Database (APASD) for Biological Invasion. Taichung, Taiwan. 18-22 September 2006; 1-17.

Raj K.S., Aarti C., Damani A., Begoor S. and Jayashree D.R. In vitro study on production of bioethanol from Lantana camara leaves. International Journal for Research and Development in Technology. 2015.3(6): 1-10.

Ramaraj R. and Unpaprom Y. Optimization of pretreatment condition for ethanol production from Cyperus diformis by response surface methodology. 3 Biotech. 2019. 9(218): 1-9.

Raud M., Tutt M., Olt J. and Kikas T. Effect of lignin content of lignocellulosic material on hydrolysis efficiency. Agronomy Research. 2015. 13(2): 405-412.

Mohammad I.J., Mohammad G.R., Ashfaque A.C. and Nanjappa A. Biofuels production through biomass pyrolysis-A technological review. Energies. 2012. 5: 4952-5001.

Ragab K., Zhongli P., Atungulu G.G., Thompson J.F. and Dongyan S. Size and moisture distribution characteristics of walnuts and their components. Food and Bioprocess Technology. 2011. 6 (3): 771-782.

Gonzalez J.F., Ramiro A., Gonzalez-Garcıa C.M., Ganan J., Encinar J.M., Sabio E. and Rubiales J. Pyrolysis of almond shells. Energy applications of fractions. Industrial and Engineering Chemistry Research. 2005. 44: 3003-3012.

กรมโรงงานอุตสาหกรรม. คู่มือแนวทางและเกณฑ์คุณสมบัติของเสียเพื่อการแปรรูปเป็นแท่งเชื้อเพลิงและบล็อกประสาน. บริษัท ซีเอมเอส เอ็นจิเนียริ่ง แอนด์ แมเนจเม้นท์ จำกัด. กรุงเทพมหานคร. 2555.

Adrian K.J., Ronald W.T., Helle S. and Harpuneet S.G. Ash management review-Applications of biomass bottom ash. Energies. 2012. 5: 3856-3873.

Agbor V.B., Cicek N., Sparling R., Berlin A. and Levin D.B. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances. 2011. 29: 675-685.

Houghton J., Weatherwax S., and Ferrell J. Breaking the biological barriers to cellulosic ethanol: A Joint Research Agenda. A research roadmap resulting from the biomass to biofuels workshop sponsored by the U.S. Department of Energy. Rockville, Maryland. December 7-9 2005; 38-56.

Ververis C., Georghiou K., Danielidis D., Hatzinikolaou D.G., Santas P., Santas R. and Corleti V. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresource Technology. 2007. 98: 296–301.

Saha B.C. Hemicellulose bioconversion. Journal of Industrial Microbiol and Biotechnology. 2003. 30: 279-291.

Yoshida M., Liu Y., Uchida S., Kawarada K., Ukagami Y., Ichinose H., Kaneko S. and Fukuda K. Effects of cellulose crystallinity, hemicellulose and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Bioscience, Biotechnology, and Biochemistry. 2008. 72(3): 805-810.

Taherzadeh M.J. and Keikhosro K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. Bioresources. 2007. 2(3): 472-499.

กระทรวงพลังงาน. โครงการศึกษาความเป็นไปได้ในการผลิตเอทานอลจากเซลลูโลสเชิงพาณิชย์. 2555. (ออนไลน์): แหล่งที่มา: http://webkc.dede.go.th/ testmax/node/239/. 2 กุมภาพันธ์ 2560.

Sun Y. and Cheng J.J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology. 2005. 96: 1599-1606.

Isci A., Himmelsbach J.N., Pometto III A.L., Raman D.R. and Anex R.P. Aqueous ammonia soaking of switchgrass followed by simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology. 2008. 144: 69-77.

Brosse N., Dufour A., Meng X., Sun Q. and Ragauskas A. Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioproduct and Biorefining. 2012. 1-19. DOI: 10.1002/bbb.1353.

Piscioneri I., Pignatelli V., Palazzo S. and Sharma N. Switchgrass production and establishment in the southern Italy climatic conditions. Energy Conversion and Management. 2001. 42: 2071-2082.

Karp S.G., Woiciechowski A.L., Soccol V.T. and Soccol C.R. Pretreatment strategies for delignification of sugarcane bagasse: A review. Brazilian Archives of Biology and Technology. 2013. 56(4): 679-689.

Sanderson M.A., Adler P.R., Boateng A.A., Casler M.D. and Sarath G. Switchgrass as a biofuels feedstock in the USA. Canadian Journal of Plant Science. 2006. 86: 1315-1325.