Polymeric sensor for metal ion
Main Article Content
Abstract
The polymer materials have been widely interested and steadily increased using in synthesis of sensors. Types of ligand can have a large impact the varied properties of the sensors. Polymeric sensor can be divided into many types such as polymer sensors bearing pendant ligand, mesoporous and nanoparticle silica bearing pendant ligands and optical sources, conjugated polymer based sensors, dendrimer-based sensors and imprinted polymer-based sensors. The color and fluorescent changed will be employed to study the interaction between polymeric sensor and guest.
Article Details
References
Lehn J. M. Supramolecular chemistry-Scope and perspectives molecules, supermolecules, and molecular devices. Angew Chem. Inr Ed. Engl. 1988. 27: 89-112.
Chen X., Pradhan T., Wang F., Kim J. S. and Yoon J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev. 2012. 112: 1910–1956.
Aida T., Meijer E. w. and Stupp S.Functional supramolecular polymers. Science. 2012. 335: 813–817.
Kim H.K., Guo W.Z., Zhu W., Yoon J. and Tian, H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev. 2011. 40: 79–93.
Yang L., Tan X., Wang Z. and Zhang X. Supramolecular Polymers: Historical development, preparation, characterization, and functions. Chem. Rev. 2015. 115: 7196−7239.
Li N., Xu Q., Xia X., Wang L.,Lu j. and Wen X. A polymeric chemosensor for Fe3+ based on fluorescence quenching 7. Wang B., Liu X., Hu Y. and Su Z. Synthesis and photophysical behavior of awater-soluble coumarin-bearing polymer for proton and Ni2+ ion sensing. Polym Int. 2009. 58: 703–709.
Wang Y., Wu H., Luo J. and Liu X. Synthesis of an amphiphilic copolymer bearing rhodamine moieties and its self-assembly into micelles as chemosensors for Fe3+ in aqueous solution. React.Funct. Polym. 2012. 72: 169–175.
Li G., Tao F., Wang H., Wang L., Zhang J., Ge P., Liu L., Tonga Y. and Sun S. A novel reversible colorimetric chemosensor for the detection of Cu2+ based on water-soluble polymer containing rhodamine receptor pendants. RSC Adv., 2015. 5: 18983-1898.
Fan L. J. and Jones W. E. Highly Selective and Sensitive Inorganic/Organic Hybrid Polymer Fluorescence “Turn-on” Chemosensory System for Iron Cations. J. Am. Chem. Soc. 2008. 128: 6784-6785.
Kim H., Lee S., Park S., Jung J. and Kim J. Detection of CuII by a chemodosimeter-functionalized monolayer on mesoporous silica. Adv. Mater. 2008. 20: 3229–3234.
Seo S., Lee H., Park M., Lim J., Kang D.,Yoon J., and Jung, J. Fluorescein-functionalized silica nanoparticles as a selective fluorogenicchemosensor for Cu2+ in living cells. Eur. J. Inorg. Chem. 2010. 843–847.
Zou Q., Zou L. and Tian H. Detection and adsorption of Hg2+ by new mesoporous silica and membrane material grafted with a chemodo-simeter. J. Mater. Chem. 2011. 21: 14441–14447.
Chakraborty C., Singh P.,Maji S. K. and Malik S. Conjugated polyfluorene based reversible fluorescent sensor for Cu (II) and cyanide ions in aqueous medium. Chem Lett. 2013.42: 1355-1357.
Li, Z., Lou X., Yu H., Li Z. and Qin J. An imidazole-functionalized polyfluorene derivative as sensitive fluorescent probe for metal ions and cyanide. Macromolecules. 41: 2008.
Qin C., Wu X., Gao B.,Tong H. and Wang L. Amino acid-functionalized polyfluorene as a water-soluble Hg2+chemosensor with high solubility andhigh photoluminescence quantum yield. Macromolecules. 2009. 42: 5427–5429.
Wu Y., Tan Y., Wu J., Chen S., Chen Y. Z., Zhou X., Jiang Y. and Tan C., Fluorescence array-based sensing of metal ions using conjugated polyelectrolytes. ACS Appl. Mater. Inter. 2015. 7: 6882–6888.
Liu S. J., Fang C., Zhao Q., Fan Q.L. and Huang W.Highly selective, colorimetric, and fluorometricmultisignalingchemosensor for hg2+ based on poly(p-phenyleneethynylene) containing benzo [2,1,3] thiadiazolemacromol. Macromol. Rapid Commun. 2008. 29: 1212–1215.
Ho, H. and Leclerc M. New colorimetric and fluorometricchemosensor based on a cationic polythiophene derivative for iodide specific detection. J. Am. Chem. Soc. 2003. 125: 4412-4413.
Zanard, C., Terzi F. and Seeber R. Polythiophenes and polythiophene-basedcomposites in amperometric sensing. Anal bioanal Chem. 2013.405: 509-531.
Zeng Q., Cai P., Li Z.,Qina J. and Tangb B. An imidazole-functionalized polyacetylene: convenient synthesis andselective chemosensor for metal ions and cyanide. Chem. Commun.2008. 1094–1096.
Zeng Q., Jim C., Lam J., Li D., Qin J. and Tang B. A new disubstitutedpolyacetylene for thedetection of a-amino acids. Macromol. Rapid Commun. 2009, 30: 170–175.
Huang X., Xu Y., Zheng L.,Meng J. and Cheng Y. A highly selective and sensitive fluorescence chemosensor based on optically active polybinaphthyls for Hg2+. Polymer. 2009. 50: 5996–6000.
Liu B., Bao Y., Wang H., Du F., Tian J., Li Q., Wang T. and Bai R. An efficient conjugated polymer sensor based on theaggregation-induced fluorescence quenching mechanism for the specific detection of palladium and platinum ions. J. Mater. Chem.2012. 22: 3555.
Gao Y., Bai H. and Shi G. Electrosynthesis of oligo(methoxyl pyrene) for turn-on fluorescence detectionof volatile aromatic compounds. J. Mater. Chem., 2010. 20: 2993–2998.
Kim J., Lee S., Yoonb J. and Vicens J. Hyperbranchedcalixarenes: synthesis and applicationsas fluorescent probes. Chem. Commun., 2009. 4791–4802.
Grabcheva I., Boschb P., McKenna M. and Stanevac D. A new colorimetric and fluorimetric sensor for metal cations based on poly(propilene amine) dendrimer modified with 1,8-naphthalimide. J. Photochem. Photobiol., A. 2009. 201: 75–80.
Grabchev, I., Dumas,S. and Chovelon, M. A polyamidoamine dendrimer as a selective colorimetric and ratiometric fluorescent sensor for Liþ cations in alkali media. Dyes. Pigments. 2009. 82: 336–340.
Ng S. and Narayanaswamy R. Fluorescence sensor using a molecularly imprinted polymeras a recognition receptor for the detection of aluminium ionsin aqueous media. Anal Bioanal Chem.2006. 386:1235–1244.
MetildaP., Prasad K., Kala R., Gladis J.M., Rao T. P. and Naidu G.R.K. Ion imprinted polymer based sensor for monitoring toxic uranium in environmental samples. Anal. Chim. Acta. 2007. 582: 147–1.