DFT investigation of O2 and PH3 adsorptions on group 8B metal˗doped boron nitride nanotubes

Main Article Content

Ployvadee Sripadung
Nadtanet Nunthaboot
Banchob Wanno

Abstract

The adsorptions of O2 and PH3 molecules on boron nitride nanotube (BNNT) with and without the doping of group 8B metals (TM) i.e. Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, and Pt were investigated using a density functional theory calculation at the B3LYP/LanL2DZ theoretical level. The structural and electronic properties and adsorption abilities for the most stable configuration of gas adsorption on pristine and TM–doped BNNTs were calculated. The results indicate that the O2 and PH3 molecules show much stronger adsorption on the TM–doped BNNTs than that on the pristine BNNT. From our calculations, it is clearly imply that pristine BNNT is not suitable for gas sensing, while the OsB–BNNT displays the highest interaction for O2 adsorption and the PtB–BNNT displays the highest interaction for PH3 adsorption. The electronic properties such as the energy gap, partial charge transfer, and density of state of TM–doped BNNTs are significantly modified after adsorptions. In conclusion, the TM–doped BNNTs can be used as O2 and PH3 gas storage and sensing in manufacturing raw materials.

Article Details

How to Cite
1.
Sripadung P, Nunthaboot N, Wanno B. DFT investigation of O2 and PH3 adsorptions on group 8B metal˗doped boron nitride nanotubes. Prog Appl Sci Tech. [Internet]. 2018 Dec. 30 [cited 2024 May 6];8(2):53-64. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243025
Section
Pure and Applied Chemistry

References

Chopra N.G., Luyken R.J., Cherrey K., Crespi V.H., Cohen M.L., Louie S.G. and Zettl A. Boron nitride nanotubes. Science. 1995. 269 : 966–967.

Zhi C., Bando Y., Tang C. and Golberg D. Boron nitride nanotubes. Mater. Sci. Eng. R Reports. 2010. 70(3–6) : 92–111.

Kalay S., Yilmaz Z., Sen O., Emanet M., Kazanc E. and Çulha M. Synthesis of boron nitride nanotubes and their applications. Beilstein J. Nanotechnol. 2015. 6(1) : 84–102.

Xie Y., Huo Y.P. and Zhang J.M. First–principles study of CO and NO adsorption on transition metals doped (8, 0) boron nitride nanotube. Appl. Surf. Sci. 2012. 258 : 6391–6397.

Tontapha S., Ruangpornvisuti V. and Wanno B. Density functional investigation of CO adsorption on Ni–doped single–walled armchair (5,5) boron nitride nanotubes. J. Mol. Model. 2013. 19 : 239–345.

Al–Sunaidi A. Adsorption of SO2 and NO2 on metal–doped boron nitride nanotubes: A computational study. Comput. Theor. Chem. 2016. 1092 : 108–113.

Chen Y., Hu C.L., Li J.Q., Jia G.X. and Zhang Y.F. Theoretical study of O2 adsorption and reactivity on single–walled boron nitride nanotubes. Chem. Phys. Lett. 2007. 449 : 149–154.

Liu H. and Turner C.H. Oxygen adsorption characteristics on hybrid carbon and boron nitride nanotubes. J. Comput. Chem. 2014. 35 : 1058–1063.

Odling W. A course of practical chemistry arranged for the use of medical students. Longmans, Green, and Co., London, England, 1865.

Gokhale S.D. and Jolly W. L. Phosphine, Inorg. Synth. 1967. 9 : 56–58.

Gassmann G., Beusekom van J.E.E. and Glindemann D. Offshore atmospheric phosphine. Naturwissenschaften. 1996. 83(3) : 129–131.

Srivastava P., Jaiswal N.K. and Sharma V. First–principles investigation of armchair boron nitride nanoribbons for sensing PH3 gas molecules. Superlattice Microst. 2014. 73 : 350–358.

Khan M.S., Srivastava A., Chaurasiya R., Khan M.S. and Dua P. NH3 and PH3 adsorption through single walled ZnS nanotube: First principle insight. Chem. Phys. Lett. 2015. 636 : 103–109.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Lyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A., Cammi R., Pomell C., Ochterski J. W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V G., Dapprich S., Daniels A. D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M., Johnson B., Chen W., Wong M.W., Gonzalez C. and Pople J.A. GAUSSIAN 09. Revision A.02, Gaussian Inc., Wallingford, CT, 2009.

Lee C., Yang W. and Parr R.G. Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37 : 785–789.

Becke A.D. Density–functional thermochemistry. III The role of exact exchange. J. Chem. Phys. 1993. 98 : 5648–5652.

Becke A.D. Density–functional exchange–energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988. 38 : 3098–3100. Hay P.J. and Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985. 82 : 270–283.

Hay P.J. and Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi J. Chem. Phys. 1985. 82 : 284–298.

Hay P.J. and Wadt W.R. Initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbital. J. Chem. Phys. 1985. 82 : 299–310.

Buasaeng P., Rakrai W., Wanno B. and Tabtimsai C. DFT investigation of NH3, PH3, and AsH3 adsorptions on Sc–, Ti–, V–, and Cr–doped single–walled carbon nanotubes. Appl. Surf. Sci. 2017. 400 : 506–514.

Tabtimsai C., Nonsri A., Gratoo N., Massiri N., Suvanvapee P. and Wanno B. Carbon monoxide adsorption on carbon atom doped perfect and Stone–Wales defect single–walled boron nitride nanotubes: A DFT investigation. Monatsh. Chem. 2014. 145 : 725–735.

Chandiramouli R., Srivastava A. and Nagarajan V. NO adsorption studies on silicene nanosheet: DFT investigation. 2015. Appl. Surf. Sci. 351 : 662–672.

Liang W., Jia J., Lv J. and Wu H. Electronic structure, stability and magnetic properties of small M1–2Cr (M = Fe, Co, and Ni) alloy encapsulated inside a (BN)48 cage. Phys. Lett. A. 2015. 379 : 1715–1721.

Yoosefian M., Zahedi M., Mola A. and Naserian S. A DFT comparative study of single and double SO2 adsorption on Pt–doped and Au–doped single–walled carbon nanotube, Appl. Sur. Sci. 2015. 349 : 864–869.

Tabtimsai C., Ruangpornvisuti V., Tontapha S. and Wanno B. A DFT investigation on group 8B transition metal–doped silicon carbide nanotubes for hydrogen storage application. Appl. Surf. Sci. 2018. 439 : 494–505.

Flükiger P., Lüthi H.P. and Portmann S. MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno, Switzerland, 2000.

O'Boyle N.M., Tenderholt A.L. and Langner K.M. A library for package–independent computational chemistry algorithms. J. Comput. Chem. 2008. 29 : 839–845.

Clementi E., Raimond D.L. and Reinhardt W.P. Atomic screening constants from SCF functions. II. Atoms with 37 to 86 Electrons. J. Chem. Phys. 1967. 47 (4) : 1300–1307.

Linus P. Maximum–valence radii of transition metals. Proc. Nat. Acad. Sci. 1975. 72 : 3799–3801.

Arenal R., Ferrari A.C., Reich S., Wirtz L., Mevellec J.Y., Lefrant S., Rubio A. and Loiseau A. Raman spectroscopy of single–wall boron nitride nanotubes. Nano. Lett. 2006. 6 : 1812–1816.