BEHAVIOR OF PINNED SCROLL WAVES WITH DIFFERENT EXCITABILITY IN A SIMULATED EXCITABLE MEDIA
Main Article Content
Abstract
The emerging of pinning phenomena is described in many dynamical systems such as superconductivity and super fluidity. The dynamics of pinned scroll waves play an important role in the human health causing longer tachycardia. In this research, we present an investigation the properties parameter (i.e. wave period, wavelength and wave velocity) of pinned scroll waves with different excitability of the media in the two-variable Oregnator model. The cylindrical obstacle is fixed constant. We found both wave period T and wavelength decrease with increasing the excitability. However, the wave velocity increases with excitability.
Article Details
References
Nettesheim S., von Oertzen A., Rotermund H. H. and Ertl G. Reaction diffusion patterns in the catalytic CO‐oxidation on Pt (110): Front propagation and spiral waves. J. Chem. Phys. 1993. 98: 9977.
Siegert F. and Weijer C.J. Control of Cell Movement during Multicellular Morphogenesis, J. Cell Sci. 1989. 93: 325.
Winfree A. T. Spiral waves of chemical activity. Science. 1972. 175: 634.
Ross J., Müller S. C. and Vidal C. Chemical waves. Science. 1988. 240: 460.
Jalife J., Gray R.A., Morley G.E. and Davidenko J.M. Self-organization and the dynamical nature of ventricular fibrillation, Chaos. 1998. 8:79-93.
Ten Tusscher K.H.W.J., Hren R., and Panfilov A.V. Organization of ventricular fibrillation in the human heart, Circulation Research. 2007. 100: e87-e101.
Winfree A.T. Scroll-shaped waves of chemical activity in three dimensions, Science. 1973.181: 937-939.
Luengviriya C., Storb U., Hauser M.J.B. and Müller S.C. An elegant method to study an isolated spiral wave in a thin layer of a batch Belousov-Zhabotinsky reaction under oxygen-free conditions, Phys Chem Chem Phys. 2006. 8: 1425-1429.
Luengviriya C., Storb U., Lindner G., Müller S.C., Bär M. and Hauser M.J.B. Scroll wave instabilities in an excitable chemical medium, Phys. Rev. Lett. 2008. 100: 148302.
Bánsági T., and Steinbock O. Negative filament tension of scroll rings in an excitable system, Phy Rev E. 2007. 76: 045202(R).
Spreckelsen F., Hornung D., Steinbock O., Parlitz U., and Luther S. Stabilization of three-dimensional scroll waves and suppression of spatiotemporal chaos by heterogeneities, Phys Rev E. 2015. 92:042920.
Tyson J.J. and Keener J.P. Singular perturbation theory of traveling waves in excitable media (a review), Physica D. 1988. 32: 327-361.
Tanaka M., Isomura A., Hörning M., Kitahata H., Agladze K. and Yoshikawa K. Unpinning of a spiral wave anchored around a circular obstacle by an external wave train: Common aspects of a chemical reaction and cardiomyocyte tissue, Chaos. 2009. 19: 043114.
Fu Y.-Q., Zhang H., Cao Z., Zheng B. and Hu, G. Removal of a pinned spiral by generating target waves with a localized stimulus, Phys Rev E. 2005. 72: 046206.
Sutthiopad M., Luengviriya J., Porjai P., Phantu M., Kanchanawarin J., Müller S.C. and Luengviriya C. Propagation of spiral waves pinned to circular and rectangular obstacles, Phys Rev E. 2015. 89: 052902.
Jahnke W. and Winfree A.T. A survey of spiral wave behavior in the Oregonator model, Int. J. of Bif. Chaos. 1991. 1:445-466.
Dowle M., Mantel R.M., and Barkley D. Fast simulations of waves in three-dimensional excitable media, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. 1997. 7: 2529-2545.
Phantu M., Kumchaiseemak N., Porjai P., Sutthiopad M., Müller S.C., Luengviriya C. and Luengviriya J. Generation of spiral waves pinned to obstacles in a simulated excitable system, Journal of Physics: Conf. Series. 2017. 901: 012021.