Biosensors for metal ion detection

Main Article Content

เธียรธัญ ทวีธนวาณิชย์
ชาติไทย แก้วทอง

Abstract

Almost all heavy metals are harmful to plants, animals and humans. To createa simple, highly sensitivity and selectivity heavy metal sensors, biosensorswere chosen to detect metal in trace amount.Inthis review, the biosensors were divided into 3 types: colorimetric detection, fluorescence detection and electrochemicalr metal detection.

Article Details

How to Cite
1.
ทวีธนวาณิชย์ เ, แก้วทอง ช. Biosensors for metal ion detection. Prog Appl Sci Tech. [Internet]. 2018 Jun. 26 [cited 2024 May 5];8(1):1-12. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243040
Section
Pure and Applied Chemistry

References

Martin, S., & Griswold, W. (2009, March). Environmental Science and Technology Briefs for Citizens. Human Health Effects of Heavy Metals., 15, 1-6.

Verma, R., & Dwivedi, P. (2013). Heavy metal water pollution- a case study. Sci. Technol., 5, 98-99.

Inoue, K.-i. (2013). Heavy metal toxicity. Inoue, J Clinic Toxicol.,3, 7

Wang, B.-S., Lee, C.-P., & Ho, T.-Y. (2014). Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: the influence oflow level Mg andCa. Talanta., 128, 337–344.

Manousakas, M., Papaefthymiou, H., Eleftheriadis, K., & Katsanou, K. (2014). Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS. Sci. Total Environ., 493, 694-700.

Filipiak-Szok, A., Kurzawa, M., & Szlyk, E. (2015). Determination of toxic metals by ICP-MS in asiatic and European determination of toxic metals by ICP-MS in Asiatic and European. J. Trace Elem. Med Biol., 30, 54–58.

Stanisz, E., & Zgoła-Grześkowiak, A. (2013). In situ metathesis ionic liquid formation dispersive liquid–liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry. Talanta, 115, 178–183.

Zhao, S., Chen, F., Zhang, J., Ren, S., Liang, H., & a, S. L. (2015). On-line flame AAS determination of traces Cd(II) and Pb(II) in water samples using thiol-functionalized SBA-15 as solid phase extractant. J. Ind. Eng. Chem., 27, 362–367.

Koesmawatia, T. A., Bucharib, B., Sulaeman, A., & Ibrahimc, S. (2015). Sample preparation methods for organic arsenic species

(arsenobetain,(CH3)3As+CH2COO-) in tuna fish samples followed by HG-QFAAS, GF-AAS, and ICP-MS measurements. Procedia. Chem., 17, 200 – 206.

Schooneveld, M. v., & DeBeer, S. (2015). A close look at dose: Toward L-edge XAS spectral uniformity, dose A close look at dose: Toward L-edge XAS spectral uniformity, dose. J. Electron. Spectrosc. Relat. Phenom., 198, 31–56.

Torchio, R., Mathon, O., & Pascarelli, S. (2014). XAS and XMCD spectroscopies to study matter at high pressure: Probing the correlation between structure and magnetism in the 3d metals. Coord. Chem. Rev., 277–278, 80–94.

Benounis, M., Jaffrezic-Renault, N., Halouani, H., Lamartine, R., & Dumazet-Bonnamour, I. (2006). Detection of heavy metals by an optical fiber sensor with a sensitive cladding including a new chromogenic calix[4]arene molecule. Mater. Sci. Eng., C, 26, 364 – 368.

Köse, M., Purtas, S., Güngör, S. A., Ceyhan, G., Akgün, E., & McKee, V. (2015). A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections. Spectrochim. Acta Mol. Biomol. Spectrosc., 136, 1388–1394.

Serrano, N., González-Calabuig, A., & Valle, M. d. (2015). Crown ether-modified electrodes for the simultaneous stripping voltammetric determination of Cd(II), Pb(II) and Cu(II). Talanta, 138, 130–137.

Bontidean, I., Berggren, C., Johansson, G., Csoregi, E., Mattiasson, B., Lloyd, J. R., Brown, N. L. (1998). Detection of heavy metal Ions at femtomolar levels Using protein-based biosensors. Anal. Chem., 70, 4162-4169.

Krizkovz, S., Huska, D., Beklova, M., Hubalek, J., Adam, V., Trnkova, L., & Kizek, R. (2010). Protein-based elrctrochemical biosensor for detectionof silver(I) ions. Environ. Toxicol. Chem., 29, 492-496.

Cheria, S., Gupta, R. K., Mullin, B. C., & Thundat, T. (2003). Detection of heavy metal ions using protein-functionalized microcantilever sensors. Biosens. Bioelectron., 19, 411-416.

Yang, X., Xu, J., Tang, X., Liu, H., & Tian, D. (2010). A novel electrochemical DNAzyme sensor for the amplified detection of Pb2+ ions. Chem. Commun., 46, 3107–3109.

Lan, T., Furuya, & Lu, Y. (2010). A highly selective lead sensor based on a classic lead DNAzyme. Chem. Commun., 46, 3896-3898.

A. L., N., L., D., & Cox, M. M. (2000). Lehninger. New York: Worth Publishers.

Liu, C.-W., Hsieh, Y.-T., Huang, C.-C., Lina, Z.-H., & Chang, H.-T. (2008). Detection of mercury(II) based on Hg2+–DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun., 2242–2244.

Memon, A. G., Zhou, X., Uu, J., Wang, R., Liu, L., Yu, B., Shi, H. (2017). Utilization of unmodified gold nanoparticles for label-free detection of mercury (II): Insight into rational design of mercury-specific oligonucleotides. J. Hazard. Mater., 321, 417-423.

Wang, L., Liu, X., Hu, X., Songa, S., & Fan, C. (2006). Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem. Commun., 3780–3782.

Wang, Y., Yang, F., & Yang, X. (2010). Colorimetric detection of mercury(II) Ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Appl. Mater. Interfaces, 2, 339–342.

Huy, G. D., Zhang, M., Zuo, P., & Ye, B.-C. (2011). Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide–metal nanoparticle conjugates. Analyst, 136, 3289–3294

Li, L., Wen, Y., Li X., Q. X., Song, S., Zuo, X., Yan, J., Liu, G. (2016). Development of mercury(II) ion biosensors based on mercury-specific oligonucleotide probes. Biosens. Bioelectron., 75, 433–445.

He, F., Tang, Y., Wang, S., Li, Y., & Zhu, D. (2005). Fluorescent Amplifying Recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection. J. Am. Chem. Soc., 127, 12343-12346.

Tang, Y., He, F., Yu, M., Feng, F., An, L., Sun, H., . . . Zhu, D. (2006). A reversible and highly selective fluorescent sensor for mercury(II) using poly(thiophene)s that contain thymine moieties. Macromol. Rapid Commun. , 27, 389–392.

Chiang, C.-K., Huang, C.-C., Liu, C.-W., & Chang, H.-T. (2008). Oligonucleotide-based fluorescence probe for Sensitive and selective detection of mercury(II) in aqueous solution. Anal. Chem., 80, 3716–3721.

Huang, C.-C., & Chang, H.-T. (2008). Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem. Commun., 1461–1463.

Liu, S.-J., Nie, H.-G., Jiang, J.-H., Shen, G.-L., & Yu, R.-Q. (2009). Electrochemical sensor for mercury(II) based on conformational switch mediated by Interstrand Cooperative Coordination. Anal. Chem., 81, 5724–5730.

Han, D., Kim, Y.-R., Oh, J.-W., Kim, T. H., Mahajan, R. K., Kim, J. S., & Kim, H. (2009). A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(II). Analyst, 134, 1857–1862.

Zhuang, J., Fu, L., Tang, D., Xu, M., Chen, G., & Yang, H. (2013). Target-induced structure-switching DNA hairpins for sensitive electrochemical monitoring of mercury(II). Biosens. Bioelectron., 39, 315–319.