INFLUENCE OF EXCITABILITY ON SCROLL WAVES IN A SIMULATED EXCITABLE MEDIA

Main Article Content

Ekachai Chongsereecharoen
Wichai Kongsri
Nakorn Kumchaiseemak
Porramain Porjai

Abstract

In three-dimensional reaction-diffusion systems, a scroll wave rotates around one-dimensional phase singularity center, called the filament. Normally, scroll waves can collapse and disappear when they hit the boundary of the medium. In this work we consider the wave period, wavelength and wave velocity of scroll waves with different excitabilities of the medium in the Oregonator model. When the excitability growths, both wave period and wavelength decline. However, the wave velocity increases with the excitability. In addition, we reconstruct the scroll wave in three-dimension to observe their structures.

Article Details

How to Cite
1.
Chongsereecharoen E, Kongsri W, Kumchaiseemak N, Porjai P. INFLUENCE OF EXCITABILITY ON SCROLL WAVES IN A SIMULATED EXCITABLE MEDIA. Prog Appl Sci Tech. [Internet]. 2018 Jun. 29 [cited 2024 Dec. 17];8(1):64-8. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243046
Section
Physics and Applied Physics

References

Nettesheim, S., von Oertzen, A., Rotermund, H. H. and Ertl G. Reaction diffusion patterns in the catalytic

CO-oxidation on Pt (110): Front propagation and spiral waves. J. Chem. Phys. 1993. 98: 9977.

Siegert, F. and Weijer, C.J. Control of Cell Movement during Multicellular Morphogenesis. J. Cell Sci, 1989. 93: 325.

Davidenko, J. M., Pertsov, A. M., Salomonz, R., Baxter, W. and Jalife, J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature, 1992. 335, 349.

Winfree, A. T. Spiral waves of chemical activity. Science. 1972. 175: 634.

Ross, J., Müller, S. C. and Vidal, C. Chemical waves. Science. 1988. 240: 460.

Winfree, A. T. Electrical turbulence in three-dimensional heart muscle. Science. 1994. 266: 1003.

Jiménez, Z.A. and Steinbock, O. Stationary vortex loops induced by filament interaction and local pinning in a chemical reaction-diffusion system. Phys. Rev. Lett. 2012. 109: 098301.

Luengviriya, C., Luengviriya, J., Sutthiopad, M., Porjai, P., Tomapatanaget, B., and Müller, S.C. Excitability of the ferroin-catalyzed Belousov-Zhabotinsky reaction with pyrogallol. Chem. Phys. Lett. 2013. 561-562: 170-174.

Luengviriya, J., Porjai, P., Phantu, M., Sutthiopad, M., Tomapatanaget, B., Müller, S.C. and Luengviriya, J. Meandering spiral waves in a bubble-free Belousov-Zhabotinsky reaction with pyrogallol. Chem. Phys. Lett. 2013. 588: 267-271.

Luengviriya, J., Sutthiopad, M., Phantu, M., Porjai, P., Kanchanawarin, J., Müller, S.C., Luengviriya, C. Influence of excitability on unpinning and termination of spiral waves. Phys. Rev. E. 2014. 90: 052919.

Yang, Z., Gao, S., Ouyang, Q., Wang, H. Scroll wave meandering induced by phase difference in a three-dimensional excitable medium. Phys. Rev. E. 2012. 86: 056209.

Field R J and Noyes R M. Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 1974. 60: 1877.

Jahnke,W. and Winfree, A.T. A survey of spiral wave behavior in the Oregonator model. Int. J. of Bif. Chaos. 1991. 1: 445-466.

Dowle, M., Mantel, R.M., Barkley, D. Fast simulations of waves in three-dimensional excitable media. Int. J. Bifurcat. Choas. 1991. 1: 445.