Isolation and evaluation of stress tolerance in acetic acid-tolerant yeasts

Main Article Content

Nadchanok Rodrussamee

Abstract

Bioethanol production from lignocellulosic materials has attracted a significant amount of interest. However, a pretreatment process of the lignocellulosic materials is needed before fermentation. This process releases microbial inhibitors, particularly acetic acid which is toxic to fermenting microorganisms and reduces ethanol yields. The aim of this study was to isolate acetic acid-tolerant yeasts obtained from natural samples. Forty-three yeast strains were isolated. The obtained isolates were then examined for their acetic acid tolerance ability by spotting a ten-fold serial dilution on YPD agar supplemented with 0.2%, 0.4%, 0.6%, 0.8%, 1.0% and 1.2% (v/v) acetic acid using Saccharomyces cerevisiae BY4743 as a comparator. The results showed that eight isolated yeasts could tolerate acetic acid up to 0.8% (v/v). However, one isolated yeast sample was able to grow in 1.0% (v/v) acetic acid and this was MY2/P1. Eight isolates were then selected for testing their ability to tolerate high temperatures and high concentrations of glucose and ethanol. It was found that L/A1 and S/PA1 could grow well at 42°C. Moreover, MY1/P3, S/PA1 and L/A1 were found to be able to tolerate glucose at 45% (w/v) and L/A1 and S/PA1 were found to tolerate ethanol at 12.5% (v/v). From this research, MY2/P1, L/A1, S/PA1 and MY1/P3 were found to possess the best properties in terms of acetic acid tolerance and the ability to grow under conditions involving high concentrations of glucose and ethanol. These strains were determined through the sequencing of the D1/D2 region of the large subunit rRNA gene (LSU) to represent to Pichia manshurica MY2/P1, P. kudriavzevii L/A1, P. kudriavzevii S/PA1 and Starmerella bacillaris MY1/P3, respectively.

Article Details

How to Cite
1.
Rodrussamee N. Isolation and evaluation of stress tolerance in acetic acid-tolerant yeasts. Prog Appl Sci Tech. [internet]. 2017 Dec. 29 [cited 2025 Jan. 19];7(2):15-27. available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243060
Section
Biology and Bioresource technology

References

Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O'Hare, M., and Kammen, D. M. Ethanol can contribute to energy and environmental goals. Science. 2006. 311(5760): 506-508.

Kuhar, S., Nair, L. M., and Kuhad, R. C. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can J Microbiol. 2008. 54(4): 305-313.

Sarkar, N., Ghosh, K. S., Bannerjee, S., and Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew Energy. 2012. 37(1): 19-27.

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., and Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005. 96(6): 673-686.

Kim, S. R., Park, Y. C., Jin, Y. S., and Seo, J. H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv. 2013. 31(6): 851-861.

Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Liden, G., and Zacchi, G. Bio-ethanol--the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006. 24(12): 549-556.

Somerville, C. Biofuels. Curr Biol. 2007. 17(4): R115-119.

Pasha, C., Kuhad, R. C., and Rao, L. V.. Strain improvement of thermotolerant Saccharomyces cerevisiae VS strain for better utilization of lignocellulosic substrates. J Appl Microbiol. 2007. 103(5): 1480-1489.

Galeote, V. A., Blondin, B., Dequin, S., and Sablayrolles, J. M.. Stress effects of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnol Lett. 2001. 23: 677-681.

Gibson, B. R., Lawrence, S. J., Leclaire, J. P., Powell, C. D., and Smart, K. A. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev. 2007. 31(5): 535-569.

Swinnen, S., Henriques, S. F., Shrestha, R., Ho, P. W., Sa-Correia, I., and Nevoigt, E. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb Cell Fact. 2017. 16(1):7.

Almeida, J. R., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., and Gorwa-Grauslund, M. F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007. 82(4): 340-349.

Sanchez, O. J., and Cardona, C. A.. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 2008. 99(13): 5270-5295.

Casey, E., Sedlak, M., Ho, N. W., and Mosier, N. S.. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 2010. 10(4): 385-393.

Pampulha, M. E., and Loureiro, V. Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae. Biotechnol Lett. 1989. 11(4): 269-274.

Phowchinda, O., Délia-Dupuy, M. L., and Strehaiano, P. Effects of acetic acid on growth and fermentative activity of Saccharomyces cerevisiae. Biotechnol Lett. 1995. 17(2): 237-242.

Limtong, S., Sumpradit, T., Kitpreechavanich, V., Tuntirungkij, M., Seki, T., and Yoshida, T. Effect of acetic acid on growth and ethanol fermentation of xylose fermenting yeast and Saccharomyces cerevisiae. Kasetsart J. 2000. 34: 64-73.

Harju, S., Fedosyuk, H., and Peterson, K. R. Rapid isolation of yeast genomic DNA: Bust n' Grab. BMC Biotechnol. 2004. 4: 8.

Saitou, N., and Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987. 4: 406-425.

Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980. 16: 111-120.

Kumar, S., Stecher, G., and Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016. 33: 1870-1874.

Narendranath, N. V., Thomas, K. C., and Ingledew, W. M. Effect of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol. 2001. 26(3): 171-177.

Stratford, M., Steels, H., Nebe-von-Caron, G., Novodvorska, M., Hayer, K., and Archer, D. B. Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. Int J Food Microbiol. 2013. 166(1): 126-134.

Bubnová, M., Zemancíková, J., and Sychrová, H. Osmotolerant yeast species differ in basic physiologicalparameters and in tolerance of non-osmotic stresses. Yeast. 2014. 31: 309–321.

Castillo Agudo, L. Lipid content of Saccharomyces cerevisiae strains with different degrees of ethanol tolerance. Appl Microbiol Biotechnol. 1992. 37: 647–651.

Dhaliwal, S. S., Oberoi, H. S., Sandhu, S. K., Nanda, D., Kumar, D., and Uppal, S. K. Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresour Technol. 2011. 102(10): 5968-5975.

Oberoi, H. S., Babbar, N., Sandhu, S. K., Dhaliwal, S. S., Kaur, U., Chadha, B. S., and Bhargav, V. K. Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J Ind Microbiol Biotechnol. 2012. 39(4): 557-566.

Toivari, M., Vehkomaki, M. L., Nygard, Y., Penttila, M., Ruohonen, L., and Wiebe, M. G. Low pH D-xylonate production with Pichia kudriavzevii. Bioresour Technol. 2013. 133: 555-562.

Yuangsaard, N., Yongmanitchai, W., Yamada, M., and Limtong, S. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Antonie van Leeuwenhoek. 2013. 103(3): 577-588.

Dandi, N. D., Dandi, B. N., and Chaudhari, A. B. Bioprospecting of thermo- and osmo-tolerant fungi from mango pulp-peel compost for bioethanol production. Antonie van Leeuwenhoek. 2013. 103(4): 723-736.

Abu Tayeh, H., Najami, N., Dosoretz, C., Tafesh, A., and Azaizeh, H. Potential of bioethanol production from olive mill solid wastes. Bioresour Technol. 2014. 152: 24-30.

Koutinas, M., Patsalou, M., Stavrinou, S., and Vyrides, I. High temperature alcoholic fermentation of orange peel by the newly isolated thermotolerant Pichia kudriavzevii KVMP10. Lett Appl Microbiol. 2016. 62(1): 75-83.

Diaz-Nava, L. E., Montes-Garcia, N., Dominguez, J. M., and Aguilar-Uscanga, M. G. Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess Biosyst Eng. 2017. 40(7):1069-1077

Yuan, S. F., Guo, G. L., and Hwang, W. S. Ethanol production from dilute-acid steam exploded lignocellulosic feedstocks using an isolated multistress-tolerant Pichia kudriavzevii strain. Microb Biotechnol. 2017. 10(6):1581-1590

Sipiczki, M. Candida zemplinina sp. nov., an osmotolerant and psychrotolerant yeast that ferments sweet botrytized wines. Int J Syst Evol Microbiol. 2003. 53(Pt 6): 2079-2083.

Sipiczki, M., Species identification and comparative molecular and physiological analysis of Candida zemplinina and Candida stellata. J Basic Microbiol. 2004. 44(6): 471-479.

Tofalo, R., Schirone, M., Torriani, S., Rantsiou, K., Cocolin, L., Perpetuini, G., and Suzzi, G. Diversity of Candida zemplinina strains from grapes and Italian wines. Food Microbiol. 2012. 29(1): 18-26.

Rantsiou, K., Dolci, P., Giacosa, S., Torchio, F., Tofalo, R., Torriani, S., Suzzi, G., Rolle, L., Cocolin, L. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl Environ Microbiol. 2012. 78(6): 1987-1994.

Englezos, V., Rantsiou, K., Cravero, F., Torchio, F., Ortiz-Julien, A., Gerbi, V., Rolle, L., Cocolin, L. Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine. Appl Microbiol Biotechnol. 2016. 100(12): 5515-5526.