Crystallization Behavior and Mechanical Properties of Flame Retarding Polylactide Biodegradable Composites based on Zinc Borate

Main Article Content

ธัญสุดา ศุภรานนท์
นีรนุช ภู่สันติ
วรศักดิ์ เพชรวโรทัย

Abstract

Flame retarding polylactide (PLA) biodegradable composites based on zinc borate (ZB) were prepared by a twin screw extruder. The influence of ZB contents (0-20 phr) on mechanical, morphological, thermal, and flame retardant properties of PLA composites was studied. The results indicated significant improvements in impact strength, crystallization behavior, and fire retardant performance of the PLA/ZB composites. The normalized impact strength increased to 197.6% for PLA composite containing 5 phr ZB, which was consistent with EDS/SEM results. The addition of ZB led to a reduction of cold crystallization temperature (Tcc) and an acceleration of PLA crystallization. Limiting oxygen index (LOI) increased from 18% of neat PLA to 23% of PLA/ZB composite; in addition, total flame time significantly decreased from 281 s to lower 25 s with self-extinguishing behavior. These revealed that ZB could be an effective additive for PLA functionalized impact modifier, nucleating agent, and flame retardant.

Article Details

How to Cite
1.
ศุภรานนท์ ธ, ภู่สันติ น, เพชรวโรทัย ว. Crystallization Behavior and Mechanical Properties of Flame Retarding Polylactide Biodegradable Composites based on Zinc Borate. Prog Appl Sci Tech. [Internet]. 2017 Oct. 27 [cited 2024 Dec. 17];7(2):98-110. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243066
Section
Pure and Applied Chemistry

References

Jauzein T., Huneault M.A. and Heuaey M.C. Crystallinity and mechanical properties of polylactide/ether-amide copolymer blends. Journal of Applied Polymer Science. 2017. 134(14):44677-44686

Liao F., Ju Y., Dai X., and Wang X. A novel efficient polymeric flame retardant for poly (lactic acid) (PLA): Synthesis and its effects on flame retardancy and crystallization of PLA. Polymer Degradation and Stability. 2015. 120:251-261.

Liu Y.J., Mao L. and Fan S.H. Preparation and study of intumescent flame retardant PBS using MgAlZnFe-CO3 Layered Double. Journal of Applied Polymer Science. 2014. 131(17):40736-40737.

Bocz K., Domonkos M., Igricz T., Kmetty A., Bárányb T. and Marosi G. Flame retarded self-reinforced poly(lactic acid) composites of outstanding impact resistance. Composites Part A: Applied Science and Manufacturing. 2015. 70:27-34.

Shi X., Zhang G., Phuong T.V. and Lazzeri A. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecule. 2015. 20(1):1579-1593.

Mohapatra A.K., Mohanty S. and Nayak S.K. Study of thermo-mechanical and morphological behavior of biodegradable PLA/PBAT/layered silicate blend nanocomposites. Journal of Polymers and the Environment. 2014. 22(3):398-408.

Lim L.T., Auras R. and Rubino M. Processing technologies for poly(lactic acid). Progress in Polymer Science. 2008. 33(8):820-852.

Wang C.F., Xie H.Y., Cheng Y.P., Chen L., Hu M.Z. and Chen S. Chemical synthesis and optical properties of CdS-poly(lactic acid) nanocomposites and their transparent fluorescent films. Colloid and Polymer Science. 2011. 289(4):395-400.

Suksut B. and Deeprasertkul C. Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber. Journal of Applied Polymer Science. 2011. 19:288-296

Gavgani J.N., Adelnia H., Sadeghi G.M.M. and Zafari F. Intumescent flame retardant polyurethane/starch composites: thermal, mechanical, and rheological properties. Journal of Applied Polymer Science. 2014. 131(23):41158-41166.

Cheng K.C., Lin Y.H., Guo W., Hwang T. and Don T.M. Flammability and tensile properties of polylactide nanocomposites with short carbon fibers, Journal of Materials Science. 2015. 50(4):1605-1612.

Murariu M., Bonnaud L., Yoann P., Fontaine F., Bourbigot S. and Dubois P. New trends in polylactide (PLA)-based materials: ‘‘Green’’ PLA-Calcium sulfate (nano)composites tailored with flame retardant properties. Polymer Degradation and Stability. 2010. 95(3):374-381.

Zhang R., Xiao X., Tai Q., Huang H., Yang J. and Hu Y. Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly(lactic acid) system. SAGE Publications. 2012. 24(8):738-746.

Garba b. Effect of zinc borate as flame retardant formulation on some tropical woods., Polymer Degradation and Stability. 1998. 64:517-522.

Yerlesen U. and Tasdemir M. Effect of zinc oxide and zinc borate on mechanical properties of high density polyethylene. Romania. Journal of Materials Science. 2015. 45(3):240-243.

Battegazzore D., Bocchini S. and Frache A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polymer Lettes. 2011. 5:849-858.

วรศักดิ์ เพชรวโรทัย และ นีรนุช ภู่สันติ. โครงสร้างผลึกและกระบวนการก่อผลึกของพอลิแลกไทด์. วารสารวิทยาศาสตร์ มศว. 2559. 32:259-272.

Li H. and Huneault M. A. Effect of Nucleation and Plasticization on the Crystallization of Poly(lactic acid). Polymer. 2007. 48:6855-6866.

Zhan J., Wang L., Hong N., Hu W., Wang J., Song L. and Hu Y. Flame-retardant and Anti-dripping Properties of Intumescent Flame-retardant Polylactide with Different Synergists. Polymer-Plastics Technology and Engineering. 2014. 53(4): 387-934.