Bio-oil Production via Catalytic Pyrolysis Process of Chlorella vulgaris Microalgae
Main Article Content
Abstract
In this research, pyrolysis process of Chlorella vulgaris microalgae was studied by a fixed bed reactor. The effect of temperature (400, 500 and 600ºC) and Na2CO3 catalyst/biomass ratio (0, 5, 10 and 20 wt.%) on yields of liquid, solid and gaseous products were investigated. In addition, the influence of catalyst Na2CO3 on chemical compositions of bio-oil produced from pyrolysis was analyzed by gas chromatography/mass spectrometry (GC/MS. Thermogravimetric analysis (TGA) data were very useful to understand thermal behavior and kinetic parameter of pyrolysis process with and without catalyst. As a result, the pyrolysis temperature at 500ºC showed the maximum bio-oil yield of 15.81 wt.% in the absence of Na2CO3. In the presence of Na2CO3 and also the increase of Na2CO3 content, bio-oil yield decreased about 5-6 wt.%. However, the quality of bio-oil obtained from catalytic pyrolysis was enhanced because of the increased aliphatic and aromatic hydrocarbons significantly and decreased acid compounds. The activation energy of catalytic pyrolysis of Chlorella vulgaris was reduced 87.42 kJ/mol compared with the pyrolysis without Na2CO3.
Article Details
References
Smets K., Roukaerts A., Czech J., Reggers G., Schreurs S., Carleer R., Yperman J. Slow catalytic pyrolysis of rapeseed cake: Product yield and characterization of the pyrolysis liquid. Biomass Bioenerg. 2013. 57 : 180-190.
McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresource Technol. 2002. 83 : 37-46.
Pan P., Hu C., Yang W., Li Y., Dong L., Zhu L., Tong D., Qing R., Fan Y. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technol. 2010. 101 : 4593-4599.
Babich I.V., van der Hulst M., Lefferts L., Moulijn J.A., O’Connor P., Seshan K. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenerg. 2011. 35 : 3199-3207.
Přibyl P., Cepák V., Zachleder V. Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris. J Appl Phycol. 2013. 25 : 545-553.
Chinnasamy S., Ramakrishnan B., Bhatnagar A., Das K.C. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO(2) and temperature. Int J Mol Sci. 2009. 10 : 518-532.
Araujo G.S., Matos L.J.B.L., Gonçalves L.R.B., Fernandes F.A.N., Farias W.R.L. Bioprospecting for oil producing microalgal strains: Evaluation of oil and biomass production for ten microalgal strains. Bioresource Technol, 2011. 102 : 5248-5250.
Thangalazhy-Gopakumar S., Adhikari S., Chattanathan S.A., Gupta R.B. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresource Technol. 2012. 118 : 150-157.
Liu G., Wright M.M., Zhao Q., Brown R.C. Catalytic fast pyrolysis of duckweed: effects of pyrolysis parameters and optimization of aromatic production. J Anal App Pyrol. 2015. 112 : 29-36.
Popa T., Fan M., Argyle M.D., Slimane R.B., Bell D.A., Towler B.F. Catalytic gasification of a Powder River Basin coal. Fuel. 2013. 103 : 161-170.
Lu C., Song W., Lin W. Kinetics of biomass catalytic pyrolysis. Biotechnol Adv. 2009. 27 : 583-587.
Agrawal A., Chakraborty S. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresource Technol, 2013. 128 : 72-80.
Moheimani N.R., Borowitzka M.A., Isdepsky A., Sing S.F. Standard Methods for Measuring Growth of Algae and Their Composition. In: Borowitzka M.A., Moheimani N.R., editors. Algae for Biofuels and Energy. Springer Netherlands, Dordrecht. 2013 : 265-284.
Mecozzi M. Estimation of total carbohydrate amount in environmental samples by the phenol–sulphuric acid method assisted by multivariate calibration. Chemometr and Intell Lab. 2005. 79 : 84-90.
Smedes F., Thomasen T.K. Evaluation of the Bligh & Dyer lipid determination method. Mar Pollut Bull. 1996. 32 : 681-688.
Friedl A., Padouvas E., Rotter H., Varmuza K. Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta. 2005. 544 : 191-198.
Liu X., Yu L., Xie F., Li M., Chen L., Li X. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch – Stärke. 2010. 62 : 139-146.
Bui H.-H., Tran K.-Q., Chen W.-H. Pyrolysis of microalgae residues – A kinetic study. Bioresource Technol. 2016. 199 : 362-366.
Song C., Pawlowski A., Ji J., Shan S., Cao Y. Catalytic pyrolysis of rice straw and product analysis. Environ Prot Eng. 2014. 40 : 35-43.
Heda P.K., Dollimore D., Alexander K.S., Chen D., Law E., Bicknell P. A method of assessing solid state reactivity illustrated by thermal decomposition experiments on sodium bicarbonate. Thermochim Acta. 1995. 255 : 255-272.
Aysu T., Sanna A. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils. Bioresource Technol. 2015. 194 : 108-116.
Aysu T., Durak H., Güner S., Bengü A.S., Esim N. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization, Bioresource Technol. 2016. 205 : 7-14.
Dickerson T., Soria J. Catalytic Fast Pyrolysis: A Review. Energies, 2013. 6 : 514.
Chen C., Ma X., He Y. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresource Technol. 2012. 117 : 264-273.