Study of counterion switch in rhodopsin using hybrid QM/MM simulations

Main Article Content

ชุตินธร พันธ์วงศ์

Abstract

Rhodopsin, a membrane protein on a retina, is responsible for visual perception in vertebrates. Rhodopsin contains retinal protonated Schiff base or RPSB (+1 charged) which undergoes isomerization from 11-cis to all-trans upon photo-excitation. The isomerization of RPSB induces changes in protein structure to complete the visual signaling. One of the important steps is a proton transfer from RPSB to its counterion (-1 charged). It is still not clear whether the 113th glutamic acid (E113) or E181 is a proton accepter from RPSB. However, many various studies have speculated a high possibility of counterion switch process from E113 (on a ground state) to E181 (on metarhodopsin I state).  In this work, the detailed study of counterion switch is performed.  The quantum mechanics/molecular mechanics (QM/MM) simulations are employed to obtained the free energy barriers for protonation of E113 and deprotonation of E181. It was found that protonation of E113 is more likely to occur than deprotonation of E181 due to different counterparts of their proton donor or acceptor.

Article Details

How to Cite
1.
พันธ์วงศ์ ช. Study of counterion switch in rhodopsin using hybrid QM/MM simulations. Prog Appl Sci Tech. [Internet]. 2017 Dec. 27 [cited 2024 Nov. 15];7(2):133-44. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243069
Section
Physics and Applied Physics

References

Yan ECY, Kazmi MA, Ganim Z, Hou JM, Pan DH, Chang BSW, et al. Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proc Nat Acad Sci USA. 2003;100:9262-7.

Yan ECY, Epps J, Lewis JW, Szundi I, Bhagat A, Sakmar TP, et al. Photointermediates of the rhodopsin S186A mutant as a probe of the hydrogen-bond network in the chromophore pocket and the mechanism of counterion switch. J Phys Chem C. 2007;111:8843-8.

Fahmy K, Jäger F, Beck M, Zvyaga TA, Sakmar TP, Siebert F. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Proc Nat Acad Sci USA. 1993;90:10206-10.

Fahmy K, Siebert F, Sakmar TP. Photoactivated state of rhodopsin and how it can form Biophys Chem. 1995;56:171-81.

Nagata T, Terakita A, Kandori H, Shichida Y, Maeda A. The hydrogen-bonding network of water molecules and the peptide backbone in the region connecting Asp83, Gly120, and Glu113 in bovine rhodopsin. Biochemistry. 1998;37:17216-22.

Yan ECY, Kazmi MA, De S, Chang BSW, Seibert C, Marin EP, et al. Function of Extracellular Loop 2 in Rhodopsin: Glutamic Acid 181 Modulates Stability and Absorption Wavelength of Metarhodopsin II. Biochemistry. 2002;41:3620-7.

Yan ECY, Ganim Z, Kazmi MA, Chang BSW, Sakmar TP, Mathies RA. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct. Biochemistry. 2004;43:10867-76.

Furutani Y, Shichida Y, Kandori H. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin. Biochemistry. 2003;42:9619-25.

Janz JM, Fay JF, Farrens DL. Stability of Dark State Rhodopsin Is Mediated by a Conserved Ion Pair in Intradiscal Loop E-2. J Biol Chem. 2003;278:16982-91.

Janz JM, Farrens DL. Role of the Retinal Hydrogen Bond Network in Rhodopsin Schiff Base Stability and Hydrolysis. J Biol Chem. 2004;279:55886-94.

Ludeke S, Beck R, Yan ECY, Sakmar TP, Siebert F, Vogel R. The role of Glu181 in the photoactivation of rhodopsin. J Mol Biol. 2005;353:345-56.

Nakamichi H, Okada T. Crystallographic analysis of primary visual photochemistry. Angew Chem Int Ed. 2006;45:4270-3.

Ramon E, Cordomi A, Bosch L, Zernii EY, Senin II, Manyosa J, et al. Critical role of electrostatic interactions of amino acids at the cytoplasmic region of helices 3 and 6 in rhodopsin conformational properties and activation. J Biol Chem. 2007;282:14272-82.

Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Nat Acad Sci USA. 2002;99:5982-7.

Martinez-Mayorga K, Pitman MC, Grossfield A, Feller SE, Brown MF. Retinal counterion switch mechanism in vision evaluated by molecular simulations. J Am Chem Soc. 2006;128:16502-3.

Virshup AM, Punwong C, Pogorelov TV, Lindquist BA, Ko C, Martinez TJ. Photodynamics in Complex Environments: Ab Initio Multiple Spawning Quantum Mechanical/Molecular Mechanical Dynamics. J Phys Chem B. 2009;113:3280-91.

Warshel A, Levitt M. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol. 1976;103:227-49.

Birge RR, Knox BE. Perspectives on the counterion switch-induced photoactivation of the G protein-coupled receptor rhodopsin. Proc Nat Acad Sci USA. 2003;100:9105-7.

Nakamichi H, Okada T. Local peptide movement in the photoreaction intermediate of rhodopsin. Proc Nat Acad Sci USA. 2006;103:12729-34.

Granucci G, Toniolo A. Molecular Gradients for Semiempirical CI Wave Functions with Floating Occupation Molecular Orbitals. Chem Phys Lett. 2000;325:79-85.

Stewart JJP. MOPAC 2000. Tokyo, Japan: Fujitsu Limited; 1999.

Punwong C, Owens J, Martinez TJ. Direct QM/MM Excited-State Dynamics of Retinal Protonated Schiff Base in Isolation and Methanol Solution. J Phys Chem B. 2015;119:704-14.

Weiner SJ, Kollman PA, Case DA, Singh UC, Ghioand C, Alagona G, et al. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J Am Chem Soc. 1984;106:765-84.

Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comp Phys. 1977;23:187-99.

Ben-Nun M, Quenneville J, Martinez TJ. Ab Initio Multiple Spawning: Photochemistry from First Principles Quantum Molecular Dynamics. J Phys Chem. 2000;104:5161-75.

Ben-Nun M, Martínez TJ. Ab Initio Quantum Molecular Dynamics. Adv Chem Phys. 2002;121:439-512.

Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM. The weighted histogram analysis method for free-energy calculations on biomolecules. I.The method. J Comp Chem. 1992;13:1011-21.