Possible Solutions of the Diophantine equation x2+ky2=z2
Main Article Content
Abstract
This paper is to identify the Diophantine equation x2+ky2=z2 where k, x, y and z are integers satisfies; case 1: k=4m+2, has no integer solution if y is odd, and have integer solutions (x, y, z) is where m is an integer, ab is a square number if y is even, case 2: k=2m+1 , have integer solutions (x, y, z) is where m is an integer, ab is an odd square number if y is odd, and where m is an integer, ab is a square number if y is even, case 3: , k=4m have integer solutions (x, y, z) is where m is an integer, ab is a square number,
Article Details
References
A. Wiles. Modula elliptic curves and Fermat last theorem. Annals of Mathematics. 142 (1995): 443-551.
N. Bruin. The Diophantine equation and . Compositio Mathematica. 118 (1999): 305-321.
M.A. Bennett. The equation . Journal de Théorie des Nombres de Bordeaux. 18 (2006): 315-321.
S. Abdelalim, H. Dyani. The solution of the Diophantine equation . International Journal of Algebra. 8 (2014): 729-732.
S. Abdelalim, H. Diany. Characterization of the solution of the Diophantine equation . Gulf Journal of Mathematics. 3 (2015): 1-4.