Some Properties of (p,q) - Fibonacci Numbers
Main Article Content
Abstract
In this paper, we consider the generalized Fibonacci sequence which is (p,q) - Fibonacci sequence. We used the Binet’s formula to show some properties of (p,q) - Fibonacci number. We get some generalized identities of (p,q) - Fibonacci number.
Article Details
How to Cite
1.
Suvarnamani A, Tatong M. Some Properties of (p,q) - Fibonacci Numbers. Prog Appl Sci Tech. [Internet]. 2015 Dec. 2 [cited 2024 Nov. 15];5(2):17-21. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243176
Section
Mathematics and Applied Statistics
References
1. S. Falcon and A. Plaza, On the Fibonacci k-numbers, Chaos, Solitons and Fractals, 32 (2007): 1615 - 1624.
2. S. Falcon and A. Plaza, The k-Fibonacci Sequence and the Pascal 2-Triangle, Chaos, Solitons and Fractals, 33 (2007): 38 - 49.
3. S. Falcon and A. Plaza, On the 3-Dimensional k-Fibnacci Spiral, Chaos, Solitons and Fractals, 38 (2008): 993 - 1003.
4. T. Koshy, Fibonacci and Lucas Number with Applications, Wiley - Interscience, New York, NY, USA, 2001.
5. S. Vajda, Fibonacci and Lucas Number and the Golden Section , Ellis horwood, Chichester, UK, 1989.
2. S. Falcon and A. Plaza, The k-Fibonacci Sequence and the Pascal 2-Triangle, Chaos, Solitons and Fractals, 33 (2007): 38 - 49.
3. S. Falcon and A. Plaza, On the 3-Dimensional k-Fibnacci Spiral, Chaos, Solitons and Fractals, 38 (2008): 993 - 1003.
4. T. Koshy, Fibonacci and Lucas Number with Applications, Wiley - Interscience, New York, NY, USA, 2001.
5. S. Vajda, Fibonacci and Lucas Number and the Golden Section , Ellis horwood, Chichester, UK, 1989.