On the k-Jacobsthal numbers by matrix methods

Main Article Content

Somnuk Srisawat
Wanna Sriprad
Oam Sthityanak

Abstract

In this paper, we define the gif.latex?k-Jacobsthal gif.latex?S-matrix and gif.latex?k-Jacobsthal gif.latex?W-matrix. After, by using this matrix representation, we obtain some identities and the Binet’s formula for gif.latex?k-Jacobsthal numbers.

Article Details

How to Cite
1.
Srisawat S, Sriprad W, Sthityanak O. On the k-Jacobsthal numbers by matrix methods. Prog Appl Sci Tech. [Internet]. 2015 Jun. 30 [cited 2024 Nov. 15];5(1):70-6. Available from: https://ph02.tci-thaijo.org/index.php/past/article/view/243207
Section
Mathematics and Applied Statistics

References

H. Campos, P. Catarino, A.P. Aires, P. Vasco, and A. Borges. On Some Identities for -Jacobsthal –Lucas Number. Int Journal of Math. Analysis. 8(10) (2014): 489-494.

S. Falco´n, Plaza, A. The k-Fibonacci sequence and the Pascal 2-triangle. Chaos, Solitons & Fractals. 33 (1) (2007): 38-49.

AF. Horadam. Jacobsthal Number Representation. The Fibonacci Quarterly. 34(1) (1986): 79-83.

AF. Horadam. Jacobsthal and Pell curves. The Fibonacci Quarterly. 26(1) (1988): 79-83.

D. Jhala, K. Sisodiya, and G.P.S.Rathore, On Some Identities for k-Jacobsthal Number. Int Journal of Math. Analysis. 7(12) (2013): 551-556.

D. Kalman. Generalized Fibonacci numbers by matrix methods. The Fibonacci Quarterly. 20(1) (1982): 73-76.

E. Karaduman. An application of Fibonacci numbers in matrices. Appl. Math. and Comp. 147 (2003): 903-908.

E. Karaduman. On determinants of matrices with general Fibonacci numbers entries. Appl. Math. and Comp. 167 (2005) 670–676

F. Koken and D. Bozkurt. On The Jacobsthal Numbers by Matrix Methods. Int. J. Contemp. Math. Sciences. 3 (13) (2008): 605-614.

T. Koshy. Fibonacci and Lucas Numbers with Applications. New York: John Wiley and Sons; 2001.

Y. K. Panwar, B. Singh and V. K. Gupta. Generalized Identities Involving Common factors of generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas numbers. International Journal of Analysis and Application. 3(1) (2013): 53-59.

J.R. Silvester. Fibonacci properties by matrix methods. Mathematical Gazette. 63 (1979): 188–191.

A. Stakhov. Fibonacci matrices, a generalization of the ‘Cassini formula’, and a new coding theory. Chaos, Solitons & Fractals. 30 (2006): 56-66.

M. Thongmoon. New Identities for the Even and Odd Fibonacci and Lucas Numbers. Int. J. Contemp. Math. Sciences. 4 (14) (2009): 671-676.