Synthesis and characterization of physical and antimicrobial properties of silver nanoparticles synthesis based on chemical reduction method
Main Article Content
Abstract
This research was studied for synthesis and characterization methods of silver nanoparticles for textiles applications. The synthesis of silver nanoparticles was based on chemical reduction method using sodium borohydride as reducing agent under different temperatures (room temperature and 2 degree Celcius). The silver nanoparticles were characterized with spectrophotometer, scanning electron microscope and dynamic light scattering apparatus and found that, silver nanoparticles (at 2 degree Celcius condition) was provided sphere shape and smaller diameter than room temperature condition. The silver nanoparticles had an average diameter of about 84±5 nm with wavelength of maximum absorbance at 391 nm. Then the antibacterial property of the silver nanoparticles was evaluated against Staphylococcus aureus AATCC 6538 and Escherichia coli AATCC. The results found that the silver nanoparticles have potential to be used as antimicrobial agent Staphylococcus aureus and Escherichia coli.
Article Details
References
http://www.material.chula.ac.th/RADIO48/May/radio5-4.htm
อ. เศรษฐเกรียงไกร. นาโนเทคโนโลยีกับการพัฒนาสิ่งทอเฉพาะทาง. วารสารเศรษฐกิจอุตสาหกรรม. 4 (2551): 11-14.
R. Dastjerdi, M. Montazer. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B. 79 (2010): 5–18.
S. Perera, B. Bhushan, R. Bandara, G. Rajapakse, S. Rajapakse, C. Bandarad. Morphological, antimicrobial, durability, and physical properties ofuntreated and treated textiles using silver-nanoparticles. Colloids Surf. A. 436 (2013): 975– 989.
K.M. McCabe, J. Turner, M.T. Hernandez. A method for assessing the disinfection response of microbial bioaerosols retained in antimicrobial filter materials and textiles. J. Microbiol. Methods. 92 (2013): 11-13.
V. Bajpai , S. Bajpai, M.K. Jha, A. Day, S. Ghosh. Microbial adherence on textile materials : a review. J. Environ. Res Dev. 5 (2011): 666-672.
I. Sondi, B. Salopek-Sondi. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J.Colloid Int. Sci. 275 (2004): 177-182.
C.-H. Xue, J. Chen, W. Yin, S.T. Jia, J.Z. Ma. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl. Surf. Sci. 258 (2012): 2468-
E. Matyjas-Zgondek, A. Bacciarelli, E. Rybicki, M.I. Szynkowska, M. Kolodziejczyk. Antibacterial Properties of Silver-Finished Textiles. Fibres Text. East. Eur. 5 (2008): 101-107.
N. Padmavathy, R. Vijayaraghavan. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv.anced Mater. 9 (2008):1-7.
A.A. Hebeish, M.M. Abdelhady, A.M. Youssef. TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile. Carbohyd. Polym. 91 (2013):549-559.
M.A.S. Melo, S.F.F. Guedes, H.H.K. Xu, L.K.A. Rodrigues. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 31 (2013): 459-467.
D. Kalpana, Y.S. Lee. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumonia. Enzyme Micro. Technol. 52 (2013): 151-156.
N. Durán, P.D. Marcato, G.I.H. De Souza, O.L. Alves, E. Esposito. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol.. 3 (2007): 203-208.
Y. Li, P. Leung, L. Yao, Q.W. Song, E. Newton. Antimicrobial effect of surgical masks coated with nanoparticles. J. Hos. Infect. 62 (2006): 58-63.
S. Selvam, R. Rajiv Gandhi, J. Suresh, S. Gowri. S. Ravikumar, M. Sundrarajan. Antibacterial effect of novel systhesized sulfated -cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Int. J. Pharm. 434 (2012): 366 -374.
N.A. Ibrahim, B.M. Eid, H. El-Batal. Novel approach for adding smart functionalities to cellulosic fabrics. Carbohyd. Polym. 87 (2012): 744– 751.
D.P Chattopadhyay, B.H. Patel. Improvement in physical and drying properties of natural fibres through pre-treament with silver nanoparticles. Indian J. Fibre Text. 34 (2009): 368-373.
X. Zhao, Y. Xia, Q. Li., X. Ma., F. Quan. C. Geng., Z. Han. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surf. A. 444 (2014): 180– 188.
A.L. Garden, K. Scholz, D.R. Schwass, C.J. Meledandri. Optimized colloidal chemistry for micelle-templated synthesis and assembly of silver nanocomposite materials. Colloids Surf. A. 441 (2014): 367– 377.
J.J. Wu, G.J. Lee, Y.S. Chen, T.L. Hu, The synthesis of nano-silver/polypropylene plastics for antibacterial application. Curr. Appl. Phys. 12 (2012): 589-595.
G.A. Patil, M.L. Bari, B.A. Bhanvase, V. Gunvir, S. Mishra, S.H. Sonawane. Continuous synthesis of functional silver nanoparticles using microreactor: Effect of surfactant and process parameters. Chem. Eng. Process. 62 (2012): 69-77.
R. Rajendran, C. Balakumar, H.A. Mohammed Ahammed, S. Jayakumar, K. Vaideki, E.M. Rajesh. Use of zinc oxide nano particles for production of antimicrobial textiles. Int. J. Eng. Sci.
Technol. 2 (2010): 202-208.
E.Saion, E. Gharibshahi, K. Naghavi. Size-Controlled and Optical Properties of Monodispersed Silver Nanoparticles Synthesized by the Radiolytic Reduction Method. Int. J. Mol. Sci. 14( 2013): 7880-7896.
X.C. Jiang, W.M. Chen, C.Y. Chen, S.X. Xiong, A.B. Yu. Role of Temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett. 6(2011): 2-9.
S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 18(2007): 225103–225112.