Preparation of Functional Polymer Nanoparticle Using Various Techniques in Emulsion Polymerization
Main Article Content
Abstract
In this research, the preparation of functional polymer particle as poly(methacrylic acid-co-styrene) (P(MAA-co-S)) by emulsion polymerization with the conventional radical polymerization (emulsion CRP) and poly(methacrylic acid-b-styrene) (P(MAA-b-S)) by iodine-transfer polymerization (emulsion ITP) and reversible chain transfer catalyzed polymerization (RTCP) was studied. The carboxyl groups existed in the methacrylic acid (MAA) monomer in the case of emulsion CRP and in polymethacrylic acid-iodide (PMAA-I) obtained from solution polymerization in the case of emulsion ITP and RTCP were used to protect the particle aggregation during the polymerization without the emulsifier. It was found that emulsion RTCP is the highest efficiency technique to produce the functional polymer particle. The obtained P(MAA-b-S) particles represented the number average (dn) particle size of 233 ± 29.89 nm with the narrowest particle size distribution (dw/dn = 1.05), the narrowest of molecular weight distribution (Mw/Mn = 1.75) and the highest charge on the surface (zeta potential; -48 ± 0.97 mV).
Article Details
References
M. Okubo, K. Ichikawa, M. Fujimura. Production of multihollow polymer particles by the stepwise alkali/acid method. Colloid Polym Sci. 272 (1994): 933-937.
H. Li, C. Kan, Y. Du, D. Liu. Morphology of P(BA-St-DAAM) latex particles prepared by seeded emulsion polymerization. Polym Adv Technol. 14 (2003): 212-216.
Q. Liu, Y. Li, Y. Duan, H. Zhou. Research progress on the preparation and application of monodisperse cationic polymer latex particles. Polym Int. 61 (2012): 1593-1602.
S. Samatya, N. Kabay, A. Tuncel. Monodisperse-porous N-methyl-D-glucamine functionalized Poly(vinylbenzyl chloride-codivinylbenzene) beads as boron selective sorbent. J Appl Polym Sci. 126 (2012): 1475-1483.
S. Fujii, S. Matsuzawa, H. Hamasaki, Y. Nakamura. Polypyrrole-Palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst. Langmuir. 28 (2012): 2436-2447.
M. Kohri, M. Sato, F. Abo, T. Inada, M. Kasuya, T. Taniguchi, T. Nakahira. Preparation and lectin binding specificity of polystyrene particles grafted with glycopolymers bearing S-linked carbohydrates. Eur Polym J. 47 (2011): 2351-2360.
S. Cao, B. Liu. The preparation and enzyme immobilization of hydrophobic polysiloxane supports. Macromol Biosci. 9 (2009): 361-368.
ว. สะโจมแสง, ภ. โกนิล. การเพิ่มประสิทธิภาพของเคอร์คูมินด้วยระบบนำส่งนาโนในการต้านเซลล์มะเร็งปากมดลูก. ว วิทย เทคโน มทรธัญบุรี. 4 (2557): 33-47.
บ. สิงห์นา. อนุภาคนาโนสำหรับการรักษาโรคมะเร็ง. ว วิทย เทคโน มทรธัญบุรี. 4 (2557): 48-57.
K. Shibuya, D. Nagao, H. Ishii, M. Konno. Advanced soap-free emulsion polymerization for highly pure, micronsized, monodisperse polymer particles. Polymer. 55 (2014): 535-539.
อ. ไชยสัตย์. คอนโทรล/ลีฟวิ่งแรดิคอลพอลิเมอไรเซชันในการสังเคราะห์พอลิเมอร์แบบอิมัลชัน. ว วิทย เทคโน ม อุบลราชธานี 14 (2555): 61-73.
P.B. Zetterlund, Y. Kagawa, M. Okubo. Controlled/Living radical polymerization in dispersed systems. Chem Rev. 108 (2008): 3747- 3794.
H. Gao, K. Matyjaszewski. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. Prog Polym Sci. 34 (2009 ): 317-350.
M.K. Georges, R.P.N. Veregin, P.M. Kazmaier, G.K. Hamer. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules. 26 (1993): 2987-2988.
M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris(triphenylphosphine)ruthenium(II)/ methylaluminium bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules. 28 (1995): 1721-1723.
J. Chiefari, Y.K. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R.T.A. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, E. Rizzardo, S.H. Thang. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules. 31 (1998): 5559-5562.
S. Yamago, K. Iida, J. Yoshida. Tailored synthesis of structurally defined polymers by organotellurium-mediated living radical polymerization (TERP): synthesis of poly (meth)acrylate derivatives and their di- and triblock copolymers. J Am Chem Soc. 124 (2002): 13666-13667.
K. Matyjaszewski, S. Gaynor, J.S. Wang. Controlled radical polymerizations: the use of alkyl iodides in degenerative transfer. Macromolecules. 28 (1995): 2093-2095.
M. Yorizane, T. Nagasuga, Y. Kitayama, A. Tanaka, H. Minami, A. Goto, T. Fukuda, M. Okubo. Reversible chain transfer catalyzed polymerization (RTCP) of methyl methacrylate with nitrogen catalyst in an aqueous microsuspension system. Macromolecules. 43 (2010): 8703-8705.
A. Goto, H. Zushi, N. Hirai, T. Wakada, Y. Tsujii, T. Fukuda. Living radical polymerizations with germanium, tin, and phosphorus catalysts-reversible chain transfer catalyzed polymerizations (RTCPs). J Am Chem Soc. 129 (2007): 13347-13354.
I. Uzulina, S. Kanagasabapathy, J. Claverie. Reversible addition fragmentation transfer (RAFT) polymerization in emulsion. Macromol Symp. 150 (2000): 33-38.
C.J. Ferguson, R.J. Hughes, B.T.T. Pham, B.S. Hawkett, R.G. Gilbert, A.K. Serelis, C.H. Such. Effective ab Initio emulsion polymerization under RAFT control. Macromolecules. 35 (2002): 9243-9245.
Y. Kitayama, A. Chaiyasat, H. Minami, M. Okubo. Emulsifier-free, organotellurium-mediated living radical emulsion polymerization of styrene: polymerization loci. Macromolecules. 43 (2010): 7465-7461.